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Abstract

Laplace approximation (LA) and its linearized variant (LLA) enable effortless
adaptation of pretrained deep neural networks to Bayesian neural networks. The
generalized Gauss-Newton (GGN) approximation is typically introduced to im-
prove their tractability. However, LA and LLA are still confronted with non-trivial
inefficiency issues and should rely on Kronecker-factored, diagonal, or even last-
layer approximate GGN matrices in practical use. These approximations are likely
to harm the fidelity of learning outcomes. To tackle this issue, inspired by the
connections between LLA and neural tangent kernels (NTKs), we develop a Nys-
tröm approximation to NTKs to accelerate LLA. Our method benefits from the
capability of popular deep learning libraries for forward mode automatic differ-
entiation, and enjoys reassuring theoretical guarantees. Extensive studies reflect
the merits of the proposed method in aspects of both scalability and performance.
Our method can even scale up to architectures like vision transformers. We also
offer valuable ablation studies to diagnose our method. Code is available at
https://github.com/thudzj/ELLA.

1 Introduction

Deep neural networks (DNNs) excel at modeling deterministic relationships and have become de facto
solutions for diverse pattern recognition problems [18, 54]. However, DNNs fall short in reasoning
about model uncertainty [1] and suffer from poor calibration [17]. These issues are intolerable in
risk-sensitive scenarios like self-driving [27], healthcare [34], finance [25], etc.

Bayesian Neural Networks (BNNs) have emerged as effective prescriptions to these pathologies [37,
21, 44, 16]. They usually proceed by estimating the posteriors over high-dimensional NN parameters.
Due to some intractable integrals, diverse approximate inference methods have been applied to
learning BNNs, spanning variational inference (VI) [1, 36], Markov chain Monte Carlo (MCMC) [55,
4], Laplace approximation (LA) [38, 50, 30], etc.

LA has recently gained unprecedented attention because its post-hoc nature nicely suits with the
pretraining-finetuning fashion in deep learning (DL). LA approximates the posterior with a Gaussian
around its maximum, whose mean and covariance are the maximum a posteriori (MAP) and the
inversion of the Hessian respectively. It is a common practice to approximate the Hessian with the
generalized Gauss-Newton (GGN) matrix [40] to make the whole workflow more tractable.

Linearized LA (LLA) [14, 22] applies LA to the first-order approximation of the NN of concern.
Immer et al. [22] argue that LLA is more sensible than LA in the presence of GGN approximation;
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Figure 1: 1-D regression on y = sin 2x+ ϵ, ϵ ∼ N (0, 0.2). Red dots, central blue curves, and shaded regions
refer to the training data, mean predictions, and uncertainty respectively. The model is a pretrained multilayer
perceptron (MLP) with 3 hidden layers. As shown, the predictive uncertainty of ELLA is on par with or better
than the competitors such as LLA with KFAC approximation (LLA-KFAC), LLA with diagonal approximation
(LLA-Diag), and last-layer LLA (LLA∗).

LLA can perform on par with or better than popular alternatives on various uncertainty quantification
(UQ) tasks [14, 6, 7]. The Laplace library [6] further substantially advances LLA’s applicability,
making it a simple and competing baseline for Bayesian DL.

The practical adoption of LA and LLA actually entails further approximations on top of GGN. E.g.,
when using Laplace to process a pretrained ResNet [18], practitioners are recommended to resort to
a Kronecker-factored (KFAC) [40] or diagonal approximation of the full GGN matrix for tractability.
An orthogonal tactic is to apply LA/LLA to only NNs’ last layer [30]. Yet, the approximation errors
in these cases can hardly be identified, significantly undermining the fidelity of the learning outcomes.

This paper aims at scaling LLA up to make probabilistic predictions in a more assurable way. We first
revisit the inherent connections between Neural Tangent Kernels (NTKs) [24] and LLA [28, 22], and
find that, if we can approximate the NTKs with the inner product of some low-dimensional vector
representations of the data, LLA can be considerably accelerated. Given this finding, we propose to
adapt the Nyström method to approximate the NTKs of multi-output NNs, and advocate leveraging
forward mode automatic differentiation (fwAD) to efficiently compute the involved Jacobian-vector
products (JVPs). The resultant accElerated LLA (ELLA) preserves the principal structures of vanilla
LLA yet without explicitly computing/storing the costly GGN/Jacobian matrices for the training data.
What’s more, we theoretically analyze the approximation error between the predictive of ELLA and
that of vanilla LLA, and find that it deceases rapidly as the Nyström approximation becomes accurate.

We perform extensive studies to show that ELLA can be a low-cost and effective baseline for Bayesian
DL. We first describe how to specify the hyperparameters of ELLA, and use an illustrative regression
task to demonstrate the effectiveness of ELLA (see Figure 1). We then experiment on standard
image classification benchmarks to exhibit the superiority of ELLA over competing baselines in
aspects of both performance and scalability. We further show that ELLA can even scale up to modern
architectures like vision transformers (ViTs) [11].

2 Background

Consider a learning problem on D = (X,Y) = {(xi,yi)}Ni=1, where xi ∈ X and yi ∈ RC (e.g.,
regression) or {0, 1}C (e.g., classification) refer to observations and targets respectively. The advance
in machine learning suggests using an NN gθ(·) : X → RC with parameters θ ∈ RP for data fitting.
Despite well-performing, regularly trained NNs only capture the most likely interpretation for the
data, thus miss the ability to reason about uncertainty and are prone to overfitting and overconfidence.

BNNs [37, 21, 44] characterize model uncertainty by probabilistic principle and can holistically rep-
resent all likely interpretations. Typically, BNNs impose a prior p(θ) on NN parameters and chase the
Bayesian posterior p(θ|D) = p(D|θ)p(θ)/p(D) where p(D|θ) =

∏
i p(yi|xi,θ) =

∏
i p(yi|gθ(xi)).

Analytical estimation is usually intractable due to NNs’ high nonlinearity. Thereby, BNN methods
usually find a surrogate of the true posterior q(θ) ≈ p(θ|D) via approximate inference methods like
variational inference (VI) [1, 20, 36, 62, 29], Laplace approximation (LA) [38, 50], Markov chain
Monte Carlo (MCMC) [55, 4, 63], particle-optimization based variational inference (POVI) [35], etc.

BNNs predict for new data x∗ by posterior predictive p(y|x∗,D) = Ep(θ|D)p(y|x∗,θ) ≈
Eq(θ)p(y|x∗,θ) ≈ 1

S

∑S
s=1 p(y|gθs

(x∗)) where θs ∼ q(θ) are i.i.d. Monte Carlo (MC) samples.

2



2.1 Laplace Approximation and Its Linearized Variant

Typically, LA builds a Gaussian approximate posterior in the form of q(θ) = N (θ; θ̂,Σ),where θ̂ de-
notes the MAP solution, i.e., θ̂ = argmaxθ log p(D|θ)+ log p(θ), and Σ is the inversion of the Hes-
sian of the negative log posterior w.r.t. parameters, i.e., Σ−1 = −∇2

θθ(log p(D|θ) + log p(θ))|θ=θ̂.
Without loss of generality, we base the following discussion on the isotropic Gaussian prior
p(θ) = N (θ;0, σ2

0IP )
1, so −∇2

θθ log p(θ)|θ=θ̂ equals to IP /σ
2
0 .

Due to the intractability of the Hessian for NNs with massive parameters, it is a common practice to
use the symmetric positive and semi-definite (SPSD) GGN matrix as a workaround, i.e.,

Σ−1 =
∑
i

Jθ̂(xi)
⊤Λ(xi,yi)Jθ̂(xi) + IP /σ

2
0 , (1)

where Jθ̂(x) ≜ ∇θgθ(x)|θ=θ̂ and Λ(x,y) ≜ −∇2
gg log p(y|g)|g=gθ̂(x)

.

When concatenating {Jθ̂(xi) ∈ RC×P }Ni=1 as a big matrix Jθ̂,X ∈ RNC×P and organizing
{Λ(xi,yi) ∈ RC×C}Ni=1 as a block-diagonal matrix ΛX,Y ∈ RNC×NC , we have:

Σ =
[
Jθ̂,X

⊤ΛX,YJθ̂,X + IP /σ
2
0

]−1

. (2)

Yet, LA suffers from underfitting [33]. This is probably because GGN approximation implicitly turns
the original model gθ(x) into a linear one glin

θ (x) = gθ̂(x)+Jθ̂(x)(θ−θ̂) but gθ(x) is still leveraged
to make prediction. I.e., there exists a shift between posterior inference and prediction [22]. To
mitigate this issue, a proposal is to predict with glin

θ (x), giving rise to linearized LA (LLA) [14, 28, 22].

LA and LLA nicely fit the pretraining-finetuning fashion in DL – they can be post-hoc applied to
pretrained models where only the GGN matrices require to be estimated and further inverted. By LA
and LLA, practitioners can adapt off-the-shelf high performing DNNs to BNNs easily.

LLA has revealed strong results on diverse UQ problems [14, 6, 7]. The Laplace library [6] further
advances LLA’s applicability, and evidences LLA is competitive to popular alternatives [63, 32, 39].

Scalability issue The GGN matrix of sizeP×P is still unamenable in modern DL scenarios, so further
approximations sparsifying it are always introduced. The diagonal and KFAC [40] approximations are
commonly adopted ones [50, 62], where only a diagonal or block-diagonal structure of the original
GNN matrix is preserved. An orthogonal tactic is to concern only a subspace of the high-dimensional
parameter space (e.g., the parameter space of the last layer [30]) to reduce the scale of the GGN
matrix. However, these strategies sacrifice the fidelity of the learning outcomes as the approximation
errors in these cases can hardly be theoretically measured. To this end, we develop accElerated
Linearized Laplace Approximation (ELLA) to push the limit of LLA in a more assurable way.

3 Methodology

In this section, we first revisit the relation of LLA to Gaussian processes (GPs) and Neural Tangent
Kernels (NTKs) [24]. After that, we reveal how to accelerate LLA by kernel approximation. Based
on these findings, we develop an efficient implementation of ELLA using the Nyström method [58].

3.1 The Gaussian Process View of LLA

Integrating q(θ) = N (θ; θ̂,Σ) with the linear model glin
θ (x) actually gives rise to a function-space

approximate posterior [14, 28, 22] in the form of q(f) = GP(f |gθ̂(x), κLLA(x,x
′)) with

κLLA(x,x
′) ≜ Jθ̂(x)ΣJθ̂(x

′)
⊤
. (3)

By Woodbury matrix identity [60], we have:

Σ =
[
Jθ̂,X

⊤ΛX,YJθ̂,X + IP /σ
2
0

]−1

= σ2
0

(
IP − Jθ̂,X

⊤[Λ−1
X,Y/σ

2
0 + Jθ̂,XJθ̂,X

⊤]−1Jθ̂,X

)
. (4)

It follows that

κLLA(x,x
′) = σ2

0

(
κNTK(x,x

′)− κNTK(x,X)[Λ−1
X,Y/σ

2
0 + κNTK(X,X)]−1κNTK(X,x

′)
)
, (5)

1IP refers to the identity matrix of size P × P .
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where κNTK(x,x
′) ≜ Jθ̂(x)Jθ̂(x

′)
⊤ denotes the neural tangent kernel (NTK) [24] corresponding to

gθ̂(x). Note that κNTK(x,x
′) is a matrix-valued kernel, with values in the space of C × C matrices.

The main challenge then turns into the computation and inversion of the gram matrix κNTK(X,X) of
size NC ×NC. When either N or C is large, the estimation of κLLA still suffers from inefficiency
issue. To address this, existing work [22] assumes independence among the C output dimensions
to cast q(f) into C independent GPs following [51], and randomly subsample M ≪ N data points
to form a cheap substitute for the original gram matrix. Despite effective in some cases, these
approximations are heuristic, lacking a clear theoretical foundation.

3.2 Scale Up LLA by Kernel Approximation

We show that if we can approximate κNTK(x,x
′) with the inner product of some explicit C ×K-

dimensional representations of the data, i.e., κNTK(x,x
′) ≈ φ(x)φ(x′)⊤ with φ : X → RC×K , the

scalability of the whole workflow can be unleashed.

Concretely, letting φX ∈ RNC×K be the concatenation of {φ(xi) ∈ RC×K}Ni=1, we have (detailed
derivation in Appendix A.2; see also [9])

κLLA(x,x
′) ≈σ2

0

(
φ(x)φ(x′)⊤ − φ(x)φ⊤

X

[
Λ−1

X,Y/σ
2
0 +φXφ

⊤
X

]−1

φXφ(x
′)⊤
)

=φ(x)
[∑

i

φ(xi)
⊤Λ(xi,yi)φ(xi) + IK/σ

2
0︸ ︷︷ ︸

G

]−1

φ(x′)⊤ ≜ κELLA(x,x
′). (6)

The matrix G ∈ RK×K possesses a similar formula to the Σ in the original κLLA in Equation (3),
yet much smaller. Once having φ, it is only required to perform one forward pass of g and φ for each
training data to estimate G. When K is reasonably small, e.g., < 100, it is cheap to invert G.

3.3 Approximate NTKs via the Nyström Method

Typical kernel approximation means include Nyström method [45, 58] and random features-based
methods [48, 49, 61, 43, 15, 9]. Given that the latter routinely relies on a relatively large number of
random features to gain a faithful approximation (which means a large K), we suggest leveraging the
Nyström method, which captures only several principal components of the kernel, to build φ.

To comfortably apply the Nyström method, we first rewrite κNTK(x,x
′) as a scalar-valued kernel

κNTK ((x, i), (x′, i′)) = Jθ̂(x, i)Jθ̂(x
′, i′)

⊤ where Jθ̂(x, i) ≜ ∇θ [gθ(x)]
(i) |θ=θ̂ : X × [C] → R1×P 2

computes the gradient of i-th output w.r.t. parameters.

By Mercer’s theorem [42],
κNTK

(
(x, i), (x′, i′)

)
=
∑
k≥1

µkψk(x, i)ψk(x
′, i′), (7)

where ψk ∈ L2(X × [C], q)3 refer to the eigenfunctions of the NTK w.r.t. some probability measure
q with µk ≥ 0 as the associated eigenvalues. Based on this, the Nyström method discovers the top-K
eigenvalues as well as the corresponding eigenfunctions for kernel approximation.

By definition, the eigenfunctions can represent the spectral information of the kernel:ˆ
κNTK

(
(x, i), (x′, i′)

)
ψk(x

′, i′)q(x′, i′) = µkψk(x, i), ∀k ≥ 1, (8)

while being orthonormal under q:ˆ
ψk(x, i)ψk′(x, i)q(x, i) = 1[k = k′], ∀k, k′ ≥ 1. (9)

In our case, q(x, i) can be factorized as the product of the data distribution and a uniform distribution
over {1, ..., C}, which can be trivially sampled from. The Nyström method draws M (M ≥ K) i.i.d.
samples X̃ = {(x1, i1), ..., (xM , iM )} from q to approximate the integration in Equation (8):

1

M

M∑
m=1

κNTK ((x, i), (xm, im))ψk(xm, im) = µkψk(x, i), ∀k ∈ [K]. (10)

2We use superscript to index a multi-dimensional tensor and [C] represents set of integers from 1 to C.
3L2(, q) denotes the space of square-integrable functions w.r.t. q.
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Applying this equation to these samples gives rise to:

1

M

M∑
m=1

κNTK ((xm′ , im′), (xm, im))ψk(xm, im) = µkψk(xm′ , im′), ∀k ∈ [K],m′ ∈ [M ], (11)

then we arrive at
1

M
Kψk ≈ µkψk, k ∈ [K], (12)

where K = Jθ̂,X̃J⊤
θ̂,X̃

, with Jθ̂,X̃ ∈ RM×P as the concatenation of {Jθ̂(xm, im) ∈ R1×P }Mm=1,

and ψk = [ψk(x1, i1), ..., ψk(xM , iM )]⊤. This implies a scaled eigendecomposition problem of K.

We compute the top-K eigenvalues λ1, ..., λK of matrix K and record the corresponding orthonormal
eigenvectors u1, ...,uK . Given the constraint in Equation (9), it is easy to see that:

µk ≈ λk
M
, and ψk(xm, im) ≈

√
Mu

(m)
k ,m ∈ [M ]. (13)

Combining Equation (13) and (10) yields the Nyström approximation of the top-K eigenfunctions:

ψ̂k(x, i) =

√
M

λk

M∑
m=1

u
(m)
k κNTK ((x, i), (xm, im)) =

√
M

λk
Jθ̂(x, i)J

⊤
θ̂,X̃
uk. (14)

Then, the mapping φ which satisfied κNTK(x,x
′) ≈ φ(x)φ(x′)⊤ can be realized as:

[φ(x)](i,k) = ψ̂k(x, i)
√
µk = Jθ̂(x, i)J

⊤
θ̂,X̃
uk/

√
λk, (15)

⇒ φ(x) = [Jθ̂(x)v1, ..., Jθ̂(x)vK ] with vk = J⊤
θ̂,X̃
uk/

√
λk. (16)

Connection to sparse approximations of GPs A recent work [57] has shown that sparse variational
Gaussian processes (SVGP) [53, 3] is algebraically equivalent to the Nyström approximation because
the Evidence Lower BOund (ELBO) of the former encompasses the learning objective of the latter.
That’s to say, ELLA implicitly deploys a sparse approximation to the original GP predictive of LLA.

Discussion In this work, the developed Nyström approximation to NTKs is mainly used for accelerat-
ing the computation of the predictive covariance of LLA, while it can also be easily applied to future
work on the practical application of NTKs.

3.4 Implementation

As shown, the estimation of φ on a data point x degenerates as K JVPs, which can be accomplished
by invoking fwAD for K times:(

x,
θ̂

vk

)
forward

−−−−−−−−−−−→
gθ̂(x)

Jθ̂(x)vk
, k ∈ [K], (17)

where the model output gθ̂(x) and the JVP Jθ̂(x)vk are simultaneously computed in one single
forward pass. Prevalent DL libraries like PyTorch [47] and Jax [2] have already been armed with the
capability for fwAD. Algorithm 2 details the procedure of building φ in a PyTorch-like style.

With that, we can trivially compute the posterior q(f) according to Equation (6), as detailed in
Algorithm 1. The procedures for estimating G and the posterior can both be batched for acceleration.

Computation overhead The estimation of φ involves M forward and backward passes of gθ̂ and the
eigendecomposition of a matrix of sizeM ×M . After that, we only need to make {vk}Kk=1 persistent,
which amounts to storing K more NN copies. Estimating G−1 requires scanning the training set
once and inverting a matrix of K ×K, which is cheap. The evaluation of q(f) embodies that of
φ, i.e., performing K forward passes under the scope of fwAD. This is similar to other BNNs that
perform S forward passes with different MC parameter samples to estimate the posterior predictive.

4 Theoretical Analysis

In this section, we theoretically analyze the approximation error of κELLA(x,x
′) to κLLA(x,x

′).
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Algorithm 1: Build the LLA posterior.
# gθ̂: NN pre-trained by MAP; (X,Y):
# training set;C: number of classes
# M,K,σ2

0: hyper-parameters
def estimate_G(φ,X,Y,K,σ2

0):
G =zeros(K,K)
for (x,y) in (X,Y):

gx,φx = φ(x)
Λx,y = hessian(nll(gx,y),gx)
G += φ⊤

xΛx,yφx

returnG+ eye(K)/σ2
0

def _q_f(φ,G−1,x)
gx,φx = φ(x)
κx,x = φxG

−1φ⊤
x

returnN (gx,κx,x)
φ =build_φ(gθ̂,X,C,M,K)
G−1 =inv(estimate_G(φ,X,Y,K,σ2

0))
q_f = partial(_q_f,φ,G−1)

Algorithm 2: Build φ.
def build_φ(gθ̂,X,C,M,K):

def _φ(gθ̂,C,{vk}
K
k=1,x):

φx = zeros(C,K)
for k in range(K):

with fwAD.enable():
gx, jvp = g(θ̂,vk)

(x)

φx[:, k] = jvp
return gx,φx

Jθ̂,X̃ =zeros(M,dim(θ̂))
form in range(M):

xm = uniform_sample(X)
im = uniform_sample([C])
Jθ̂,X̃[m]=grad(gθ̂(xm)[im],θ̂)

{λk,uk}Kk=1 = eig(Jθ̂,X̃J⊤
θ̂,X̃

,top = K)
for k in range(K):

vk = J⊤
θ̂,X̃
uk/

√
λk

return partial(_φ,gθ̂,C,{vk}
K
k=1)

To reduce unnecessary complexity, this section assumes using M = K i.i.d. MC samples when per-
forming the Nyström method. Then, κELLA can be reformulated as (details deferred to Appendix A.3)

κELLA(x,x
′) = Jθ̂(x)J

⊤
θ̂,X̃

[
Jθ̂,X̃J⊤

θ̂,XΛX,YJθ̂,XJ⊤
θ̂,X̃ + Jθ̂,X̃J⊤

θ̂,X̃/σ
2
0

]−1

Jθ̂,X̃︸ ︷︷ ︸
Σ′

Jθ̂(x)
⊤. (18)

Thereby, the gap between κELLA(x,x
′) and κLLA(x,x

′) can be upper bounded by E = ∥Σ′ −Σ∥,
where ∥ · ∥ represents the matrix 2-norm (i.e., the spectral norm). In typical cases, P ≫ M , thus
with high probability K = Jθ̂,X̃J⊤

θ̂,X̃
≻ 0. We present an upper bound of E as follows.

Theorem 1 (Proof in Appendix A.4). Let cΛ be a finite constant associated with Λ, and E ′ the error
of Nyström approximation ∥Jθ̂,XJ⊤

θ̂,X̃
(Jθ̂,X̃J⊤

θ̂,X̃
)−1Jθ̂,X̃J⊤

θ̂,X
− Jθ̂,XJ⊤

θ̂,X
∥. It holds that

E ≤ σ4
0cΛE ′ + σ2

0 .

E ′ has been extensively analyzed by pioneering work [12, 5, 26], and we simply adapt the results
developed by Drineas and Mahoney [12] to our case. We denote the maximum diagonal entry and the
M + 1-th largest eigenvalue of Jθ̂,XJ⊤

θ̂,X
by cκ and λ̃M+1 respectively.

Theorem 2 (Error bound of Nyström approximation). With probability at least 1− δ, it holds that:

E ′ ≤ λ̃M+1 +
NC√
M
cκ(2 + log

1

δ
).

Plugging this back to E , we arrive at the corollary below.

Corollary 1. With probability at least 1− δ, the following bound exists:

E ≤ σ4
0cΛ(λ̃M+1 +

NC√
M
cκ(2 + log

1

δ
)) + σ2

0 .

As desired, the upper bound of E decreases along with the growing of the number of MC samples M .

5 Experiments

We first discuss how to specify the hyperparameters of ELLA, then expose an interesting finding.
After that, we compare ELLA to competing baselines to evidence its merits in efficacy and scalability.
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Figure 2: (a)-(b): The approximation errors ϵNyström and ϵELLA vary w.r.t. M and K (M ≥ K). (c): The test
NLL of ELLA on CIFAR-10 varies w.r.t. the number of training data N .

5.1 Specification of Hyperparameters

Given an NN gθ̂ pretrained by MAP, we need to specify the prior variance σ2
0 , the number of MC

samples in Nyström method M , and the number of remaining eigenpairs K before applying ELLA.
We simply set σ2

0 to 1
Nγ with γ as the weight decay coefficient used for pretraining according to [10].

We perform an empirical study to inspect how M and K affect the quality of the Nyström approxima-
tion and the ELLA GP covariance. We take 2000 MNIST images as training set X, and 256 others
as validation set Xval. The architecture contains 2 convolutions and a linear head. Batch normaliza-
tion [23] and ReLU activation are used. The number of parameters P is 29, 034. Larger architectures
or larger X will render the exact evaluation of κLLA unapproachable. We quantify the approximation
error of the Nyström method by ϵNyström ≜ ∥Jθ̂,XJ⊤

θ̂,X̃
(Jθ̂,X̃J⊤

θ̂,X̃
)−1Jθ̂,X̃J⊤

θ̂,X
− Jθ̂,XJ⊤

θ̂,X
∥/∥Jθ̂,XJ⊤

θ̂,X
∥,

and that from κELLA to κLLA by ϵELLA ≜ 1
|Xval|

∑
x∈Xval

∥κELLA(x,x)− κLLA(x,x)∥/∥κLLA(x,x)∥. We
vary M from 4 to 2000 and K from 4 to M , and report the approximation errors in Figure 2 (a)-(b).
We notice that 1) the larger K the better; 2) when fixing K, ϵNyström and ϵELLA decay as M grows;
3) ϵNyström decays more rapidly than ϵELLA, echoing Theorem 1. Given that ELLA needs to store K
vectors of size P , small K is desired for efficiency. K ∈ [16, 32] seems to be a reasonable choice
given Figure 2. Besides, Appendix C.1 includes a direct study on how the test NLL of ELLA varies
w.r.t. M and K on CIFAR-10 [31] benchmark. Given these results, we set M = 2000 and K = 20
in the following experiments unless otherwise stated.

ELLA (or LLA) finds a GP posterior, so predicts with a variant of the aforementioned pos-
terior predictive, formulated as p(y|x∗,D) = Ep(f |D)p(y|f(x∗)) ≈ Eq(f)p(y|f(x∗)) =
Ef∼N (gθ̂(x∗),κELLA(x∗,x∗))p(y|f). In classification tasks, we use 512 MC samples to approximate the
last expectation and it is cheap.

5.2 The Overfitting Issue of LLA

Reinspecting Equation (1) and (6), we see, with more training data involved, the covariance in
LA, LLA, and ELLA shrinks and the uncertainty dissipates. However, under ubiquitous model
misspecification [41], should the uncertainty vanish that fast? We perform a study with ResNets [18]
on CIFAR-10 to seek an answer. Concretely, we randomly subsample N data from the training set
of CIFAR-10, and fit ELLA on them. We depict the test negative log-likelihood (NLL), accuracy,
and expected calibration error (ECE) [17] of the deployed ELLA in Figure 2 (c) and Appendix C.2.
We also provide the corresponding results of LLA∗4 in Appendix C.3. The V-shape NLL curves
across settings reflect the overfitting issue of ELLA and LLA∗ (or more generally, LLA). Figure 7
also shows that tuning the prior precision w.r.t. marginal likelihood can alleviate the overfitting of
LLA∗ to some extent, which may be the reason why such an issue has not been reported by previous
works. But also of note that tuning the prior precision cannot fully eliminate overfitting.

To address the overfitting issue, we advocate performing early stop when fitting ELLA/LLA on
big data. Specifically, when iterating over the training data to estimate G (see Equation (6)), we

4We experiment on LLA∗ here due to its higher efficiency than LLA-KFAC and LLA-Diag. LLA∗ is the
default option in the Laplace library [6].
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Table 1: Comparison on test accuracy (%) ↑, NLL ↓, and ECE ↓ on CIFAR-10. We report the average results
over 5 random runs. As the accuracy values of most methods are close, we do not highlight the best.

Method ResNet-20 ResNet-32 ResNet-44 ResNet-56
Acc. NLL ECE Acc. NLL ECE Acc. NLL ECE Acc. NLL ECE

ELLA 92.5 0.233 0.009 93.5 0.215 0.008 93.9 0.204 0.007 94.4 0.187 0.007
MAP 92.6 0.282 0.039 93.5 0.292 0.041 94.0 0.275 0.039 94.4 0.252 0.037
MFVI-BF 92.7 0.231 0.016 93.5 0.222 0.020 93.9 0.206 0.018 94.4 0.188 0.016
LLA∗ 92.6 0.269 0.034 93.5 0.259 0.033 94.0 0.237 0.028 94.4 0.213 0.022
LLA∗-KFAC 92.6 0.271 0.035 93.5 0.260 0.033 94.0 0.232 0.028 94.4 0.202 0.024
LLA-Diag 92.2 0.728 0.404 92.7 0.755 0.430 92.8 0.778 0.445 92.9 0.843 0.480
LLA-KFAC 92.0 0.852 0.467 91.8 1.027 0.547 91.4 1.091 0.566 89.8 1.174 0.579
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Figure 3: NLL (Left) and ECE (Right) on CIFAR-10 corruptions for models trained with ResNet-56 architecture.
Each box corresponds to a summary of the results across 19 types of skew.

continuously record the NLL of the current ELLA posterior on some validation data, and stop when
there is a trend of overfitting. If we cannot access a validation set easily, we can apply strong data
augmentation to some training data to form a substitute of the validation set. Compared to tuning the
prior, early stopping also helps reduce the time cost of processing big data (e.g., ImageNet [8]).

5.3 Illustrative Regression

We build a regression problem with N = 16 samples from y = sin 2x+ ϵ, ϵ ∼ N (0, 0.2) as shown in
Figure 1. The model is an MLP with 3 hidden layers and tanh activations, and we pretrain it by MAP
for 1000 iterations. For ELLA, we set M = 16 and K = 5 for efficiency. Unless stated otherwise,
we use the interfaces of Laplace [6] to implement LLA, LLA-KFAC, LLA-Diag, and LLA∗. The
hyperparameters of the competitors are equivalent to those of ELLA except for some dedicated ones
like M and K. It is clear that ELLA delivers a closer approximation to LLA than LLA-Diag and
LLA∗. We further quantify the quality of the predictive distributions produced by these approximate
LLA methods using certain metrics. Considering that in this case, the predictive distribution for one
test datum is a Gaussian distribution, we use the KL divergence between the Gaussians yielded by the
approximate LLA method and vanilla LLA as a proxy of the approximation error (averaged over a set
of test points). The results are reported in Appendix C.4. As shown, LLA-KFAC comes pretty close
to LLA. Yet, LLA seems to underestimate in-between uncertainty in this setting, so ELLA seems to
be a more reliable (instead of more accurate) approximation than LLA-KFAC. We also highlight the
higher scalability of ELLA than LLA-KFAC (see Figure 4(c)), which reflects that ELLA can strike a
good trade-off between efficacy and efficiency.

5.4 CIFAR-10 Classification

Then, we evaluate ELLA on CIFAR-10 benchmark using ResNet architectures [18]. We obtain
pretrained MAP models from the open source community. Apart from MAP, LLA∗, LLA-Diag,
LLA-KFAC, we further introduce last-layer LLA with KFAC approximation (LLA∗-KFAC) and
mean-field VI via Bayesian finetuning [10] (MFVI-BF)5 as baselines. LLA cannot be directly applied
as the GGN matrices are huge. These methods all locate in the family of Gaussian approximate
posteriors and are all post-hoc applied to the pretrained models, so the comparisons will be fair.
Regarding the setups, we use M = 2000 and K = 20 for ELLA;6 we use 20 MC samples to estimate

5Flipout [56] trick is deployed for variance-reduced gradient estimation.
6Storing 2000 vectors of size P is costly, so we trade time for memory and compute them whenever needed.
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Figure 4: (a) Error versus confidence plots for methods trained on CIFAR-10 and tested on CIFAR-10+SVHN.
(b) Test NLL of ELLA varies w.r.t. K on CIFAR-10. (c) Comparison on the wall-clock time used for predicting all
CIFAR-10 test data (measured on an NVIDIA A40 GPU). The results are obtained with ResNet-20 architecture.

Table 2: Comparison on test accuracy (%) ↑, NLL ↓, and ECE ↓ on ImageNet. We report the average results
over 3 random runs.

Method ResNet-18 ResNet-34 ResNet-50
Acc. NLL ECE Acc. NLL ECE Acc. NLL ECE

ELLA 69.8 1.243 0.015 73.3 1.072 0.018 76.2 0.948 0.018
MAP 69.8 1.247 0.026 73.3 1.081 0.035 76.2 0.962 0.037
MFVI-BF 70.3 1.218 0.042 73.7 1.043 0.033 76.1 0.945 0.030

the posterior predictive of MFVI-BF (as it incurs 20 NN forward passes), and use 512 ones for the
other methods as stated. We have enabled the tuning of the prior precision for all LLA baselines, but
not for ELLA.

We present the comparison on test accuracy, NLL, and ECE in Table 1. As shown, ELLA exhibits
superior NLL and ECE across settings. MFVI-BF also gives good NLL. LLA∗ and LLA∗-KFAC
can improve the uncertainty and calibration of MAP, yet underperforming ELLA. LLA-Diag and
LLA-KFAC fail for unclear reasons (also reported by [9]), we thus exclude them from the following
studies.

We then examine the models on the widely used out-of-distribution (OOD) generalization/robustness
benchmark CIFAR-10 corruptions [19] and report the results in Figure 3 and Appendix C.5. It is
prominent that ELLA surpasses the baselines in aspects of NLL and ECE at various levels of skew,
implying its ability to make conservative predictions for OOD inputs.

We further evaluate the models on the combination of the CIFAR-10 test data and the OOD SVHN
test data. The predictions on SVHN are all regarded as wrong due to label shift. We plot the average
error rate of the samples with ≤ τ (τ ∈ [0, 1]) confidence in Figure 4 (a). As shown, ELLA makes
less mistakes than the baselines under various confidence thresholds. Figure 4 (b) displays how K
impacts the test NLL. We see that K ∈ [20, 30] can already lead to good performance, reflecting the
efficiency of ELLA. Another benefit of ELLA is that with it, we can actively control the performance
vs. cost trade-off. Figure 4 (c) shows the comparison on the time used for predicting all CIFAR-10
test data. We note that ELLA is slightly slower than MFVI and substantially faster than non-last-layer
LLA methods.

5.5 ImageNet Classification

We apply ELLA to ImageNet classification [8] to demonstrate its scalability. The experiment settings
are identical with those for CIFAR-10. We observe that all LLA methods implemented with Laplace
would cause out-of-memory (OOM) errors or suffer from very long fitting procedures, thus take only
MAP and MFVI-BF as baselines. Table 2 presents the comparison on test accuracy, NLL, and ECE
with ResNet architectures. We see that ELLA maintains its superiority in ECE while MFVI-BF can
induce higher accuracy and lower NLL. This may be attributed to that the pretrained MAP model lies
at a sharp maxima of the true posterior so it is necessary to properly adjust the mean of the Gaussian
approximate posterior.
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Figure 5: NLL (Left) and ECE (Right) on ImageNet corruptions for models trained with ViT-B architecture.
Each box corresponds to a summary of the results across 19 types of skew.

Table 3: Comparison on test accu-
racy (%) ↑, NLL ↓, and ECE ↓ on
ImageNet with ViT-B architecture.

Method Acc. NLL ECE

ELLA 81.6 0.695 0.022
MAP 81.5 0.700 0.039

We lastly apply ELLA to ViT-B [11]. We compare ELLA to MAP
in Table 3 as all other baselines incur OOM errors or crushingly
long running time. As shown, ELLA beats MAP in multiple as-
pects. Figure 5 shows the results of ELLA and MAP on ImageNet
corruptions [19]. They are consistent with those for CIFAR-10
corruptions. We reveal by this experiment that ELLA can be a
more applicable and scalable method than most of existing BNNs.

6 Related Work

LA [38, 50, 14, 30, 22, 6, 7] locally approximates the Bayesian posterior with a Gaussian distribution,
analogous to VI with Gaussian variationals [16, 1, 36, 52, 46] and SWAG [39]. LA can be applied to
pretrained models effortlessly while the acquired posteriors are potentially restrictive (see Section 5.5).
VI enjoys higher flexibility yet relies on costly training; BayesAdapter [10] seems to be a remedy
to the issue but its accessibility is still lower than LA. SWAG stores a series of SGD iterates to
heuristically construct an approximate posterior and is empirically weaker than LA/LLA [6].

Though more expressive approaches like deep ensembles [32] and MCMC [55, 4, 63] can explicitly
explore diverse posterior modes, they face limitations in efficiency and scalability. What’s more, it has
been shown that LA/LLA can perform on par with or better than deep ensembles and cyclical MCMC
on multiple benchmarks [6]. This may be attributed to the un-identified, complicated relationships
between the parameters space and the function space of DNNs [59]. Also of note that LA can embrace
deep ensembles to capture multiple posterior modes [13].

[9] introduces a general kernel approximation technique using neural networks. By contrast, we focus
on leveraging kernel approximation to accelerate Laplace approximation. Thus, the focus of the two
works is distinct. Indeed, this work shares a similar idea with the Sec 4.3 in [9] that LLA can be
accelerated by kernel approximation. But, except for such an idea, this work differentiates from [9]
in aspects like motivations, techniques, implementations, theoretical backgrounds, and applications.
Our implementation, theoretical analysis, and some empirical findings are all novel.

7 Conclustion

This paper proposes ELLA, a simple, effective, and reliable approach for Bayesian deep learning.
ELLA addresses the unreliability issues of existing approximations to LLA and is implemented based
on Nyström method. We offer theoretical guarantees for ELLA and perform extensive studies to
testify its efficacy and scalability. ELLA currently accounts for only the predictive, and extending
it to estimate model evidence for model selection [38] deserves future investigation. Using model
evidence to select the number of remaining eigenpairs K for ELLA is also viable.
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using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A Proof

A.1 Derivation of Equation (5)

Given
Σ = σ2

0

(
IP − Jθ̂,X

⊤[Λ−1
X,Y/σ

2
0 + Jθ̂,XJθ̂,X

⊤]−1Jθ̂,X

)
,

we have

κLLA(x,x
′) =Jθ̂(x)ΣJθ̂(x

′)
⊤

=σ2
0Jθ̂(x)

(
IP − Jθ̂,X

⊤
[
Λ−1

X,Y/σ
2
0 + Jθ̂,XJθ̂,X

⊤
]−1

Jθ̂,X

)
Jθ̂(x

′)
⊤

=σ2
0

(
Jθ̂(x)Jθ̂(x

′)
⊤ − Jθ̂(x)Jθ̂,X

⊤
[
Λ−1

X,Y/σ
2
0 + Jθ̂,XJθ̂,X

⊤
]−1

Jθ̂,XJθ̂(x
′)
⊤
)

=σ2
0

(
κNTK(x,x

′)− κNTK(x,X)[Λ−1
X,Y/σ

2
0 + κNTK(X,X)]−1κNTK(X,x

′)
)
.

A.2 Derivation of Equation (6)

κELLA(x,x
′) =σ2

0

(
φ(x)φ(x′)⊤ − φ(x)φ⊤

X

[
Λ−1

X,Y/σ
2
0 +φXφ

⊤
X

]−1

φXφ(x
′)⊤

)
=φ(x)σ2

0

(
IK −φ⊤

X

[
Λ−1

X,Y/σ
2
0 +φXφ

⊤
X

]−1

φX

)
φ(x′)⊤

=φ(x)
[
φ⊤

XΛX,YφX + IK/σ
2
0

]−1
φ(x′)⊤ (Woodbury matrix identity)

=φ(x)
[∑

i

φ(xi)
⊤Λ(xi,yi)φ(xi) + IK/σ

2
0

]−1

φ(x′)⊤.

A.3 Derivation of Equation (18)

When M = K, the eigenvalues and eigenvectors of K = Jθ̂,X̃J⊤
θ̂,X̃

can be organized as
square matrices diag (λ) = diag (λ1, ..., λK) and U = [u1, ...,uK ] respectively. And φ(x) =

[Jθ̂(x)v1, ..., Jθ̂(x)vK ] = Jθ̂(x)J
⊤
θ̂,X̃
U diag (λ)

− 1
2 . Of note that U is a orthogonal matrix where

UU⊤ = U⊤U = IK ⇒ U−1 = U⊤, and by definition, Jθ̂,X̃J⊤
θ̂,X̃

= U diag (λ)U⊤. Then

κELLA(x,x
′) =φ(x)

[∑
i

φ(xi)
⊤Λ(xi,yi)φ(xi) + IK/σ

2
0

]−1

φ(x′)⊤

=φ(x)
[
φ⊤

XΛX,YφX + IK/σ
2
0

]−1
φ(x′)⊤

=Jθ̂(x)J
⊤
θ̂,X̃
U diag (λ)

− 1
2

[
diag (λ)

− 1
2U⊤Jθ̂,X̃J⊤

θ̂,X
ΛX,YJθ̂,XJ⊤

θ̂,X̃
U diag (λ)

− 1
2

+ IK/σ
2
0

]−1

diag (λ)
− 1

2U⊤Jθ̂,X̃Jθ̂(x)
⊤

=Jθ̂(x)J
⊤
θ̂,X̃
U
[
U⊤Jθ̂,X̃J⊤

θ̂,X
ΛX,YJθ̂,XJ⊤

θ̂,X̃
U + diag (λ)/σ2

0

]−1

U⊤Jθ̂,X̃Jθ̂(x)
⊤

=Jθ̂(x)J
⊤
θ̂,X̃

[
UU⊤Jθ̂,X̃J⊤

θ̂,X
ΛX,YJθ̂,XJ⊤

θ̂,X̃
UU⊤ +U diag (λ)U⊤/σ2

0

]−1

Jθ̂,X̃Jθ̂(x)
⊤

=Jθ̂(x)J
⊤
θ̂,X̃

[
Jθ̂,X̃J⊤

θ̂,X
ΛX,YJθ̂,XJ⊤

θ̂,X̃
+ Jθ̂,X̃J⊤

θ̂,X̃
/σ2

0

]−1

Jθ̂,X̃Jθ̂(x)
⊤.

A.4 Proof of Theorem 1

Theorem 1. Let cΛ be a finite constant associated with Λ, and E ′ the error of Nyström approximation
∥Jθ̂,XJ⊤

θ̂,X̃
(Jθ̂,X̃J⊤

θ̂,X̃
)−1Jθ̂,X̃J⊤

θ̂,X
− Jθ̂,XJ⊤

θ̂,X
∥. It holds that

E ≤ σ4
0cΛE ′ + σ2

0 .
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Proof. With K = Jθ̂,X̃J⊤
θ̂,X̃

≻ 0, let P = J⊤
θ̂,X̃

K−1Jθ̂,X̃. By Woodbury matrix identity,

Σ′ = J⊤
θ̂,X̃

[
Jθ̂,X̃J⊤

θ̂,X
ΛX,YJθ̂,XJ⊤

θ̂,X̃
+ Jθ̂,X̃J⊤

θ̂,X̃
/σ2

0

]−1

Jθ̂,X̃

= J⊤
θ̂,X̃

[
Jθ̂,X̃J⊤

θ̂,X
ΛX,YJθ̂,XJ⊤

θ̂,X̃
+K/σ2

0

]−1

Jθ̂,X̃

= σ2
0J

⊤
θ̂,X̃

[
K−1 −K−1Jθ̂,X̃J⊤

θ̂,X
(Λ−1

X,Y/σ
2
0 + Jθ̂,XJ⊤

θ̂,X̃
K−1Jθ̂,X̃J⊤

θ̂,X
)−1Jθ̂,XJ⊤

θ̂,X̃
K−1

]
Jθ̂,X̃

= σ2
0

[
P−PJ⊤

θ̂,X
(Λ−1

X,Y/σ
2
0 + Jθ̂,XPJ⊤

θ̂,X
)−1Jθ̂,XP

]
.

It is interesting to see that P is a projector: P2 = P and PJ⊤
θ̂,X̃

= J⊤
θ̂,X̃

. Then

Σ′ = σ2
0

[
P−PJ⊤

θ̂,X
(Λ−1

X,Y/σ
2
0 + Jθ̂,XPPJ⊤

θ̂,X
)−1Jθ̂,XP

]
.

By Woodbury matrix identity again,

Σ′ = σ2
0

[
P− σ2

0PJ⊤
θ̂,X

(
ΛX,Y −ΛX,YJθ̂,XP(IP /σ

2
0

+PJ⊤
θ̂,X

ΛX,YJθ̂,XP)−1PJ⊤
θ̂,X

ΛX,Y

)
Jθ̂,XP

]

= σ2
0

[
P− σ2

0

(
PJ⊤

θ̂,X
ΛX,YJθ̂,XP−PJ⊤

θ̂,X
ΛX,YJθ̂,XP(IP /σ

2
0

+PJ⊤
θ̂,X

ΛX,YJθ̂,XP)−1PJ⊤
θ̂,X

ΛX,YJθ̂,XP
)]
.

Let T = (PJ⊤
θ̂,X

ΛX,YJθ̂,XP+ IP /σ
2
0)

−1, so PJ⊤
θ̂,X

ΛX,YJθ̂,XP = T−1 − IP /σ
2
0 . It follows that

Σ′ = σ2
0

[
P− σ2

0

(
T−1 − IP /σ

2
0 − (T−1 − IP /σ

2
0)T(T−1 − IP /σ

2
0)
)]

= T+ σ2
0(P− IP ).

As a result,

E = ∥Σ′ −Σ∥
= ∥T+ σ2

0(P− IP )−Σ∥
≤ ∥T−Σ∥+ σ2

0∥P− IP ∥
= ∥T−Σ∥+ σ2

0 ,

where we leverage the fact that the eigenvalue of the projector P is either 1 or 0. And

∥T−Σ∥ = ∥ −T(T−1 −Σ−1)Σ∥
= ∥ −T(PJ⊤

θ̂,X
ΛX,YJθ̂,XP− J⊤

θ̂,X
ΛX,YJθ̂,X)Σ∥

≤ ∥T∥∥Σ∥∥PJ⊤
θ̂,X

ΛX,YJθ̂,XP− J⊤
θ̂,X

ΛX,YJθ̂,X∥

≤
∥PJ⊤

θ̂,X
ΛX,YJθ̂,XP− J⊤

θ̂,X
ΛX,YJθ̂,X∥

λmin(PJ⊤
θ̂,X

ΛX,YJθ̂,XP+ IP /σ2
0)λmin(J⊤

θ̂,X
ΛX,YJθ̂,X + IP /σ2

0)

≤ σ4
0∥PJ⊤

θ̂,X
ΛX,YJθ̂,XP− J⊤

θ̂,X
ΛX,YJθ̂,X∥,

where λmin(·) denotes the smallest eigenvalue of a matrix. The last inequality holds due to that the
eigenvalues of PJ⊤

θ̂,X
ΛX,YJθ̂,XP+ IP /σ

2
0 and J⊤

θ̂,X
ΛX,YJθ̂,X + IP /σ

2
0 are larger than or equal

to 1/σ2
0 as PJ⊤

θ̂,X
ΛX,YJθ̂,XP and J⊤

θ̂,X
ΛX,YJθ̂,X are SPSD.

To estimate the upper bound of ∥T−Σ∥, we lay out the following Lemma.

Lemma 1 (Proposition of Weinstein–Aronszajn identity). If A and B are matrices of size m× n and
n×m respectively, the non-zero eigenvalues of AB and BA are the same.
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It follows that

∥T−Σ∥ ≤σ4
0∥PJ⊤

θ̂,X
ΛX,YJθ̂,XP− J⊤

θ̂,X
ΛX,YJθ̂,X∥

=
σ4
0

2
∥(PJ⊤

θ̂,X
Λ

1
2

X,Y + J⊤
θ̂,X

Λ
1
2

X,Y)(Λ
1
2

X,YJθ̂,XP−Λ
1
2

X,YJθ̂,X)

+ (PJ⊤
θ̂,X

Λ
1
2

X,Y − J⊤
θ̂,X

Λ
1
2

X,Y)(Λ
1
2

X,YJθ̂,XP+Λ
1
2

X,YJθ̂,X)∥

≤σ
4
0

2
∥(PJ⊤

θ̂,X
Λ

1
2

X,Y + J⊤
θ̂,X

Λ
1
2

X,Y)(Λ
1
2

X,YJθ̂,XP−Λ
1
2

X,YJθ̂,X)∥

+
σ4
0

2
∥((PJ⊤

θ̂,X
Λ

1
2

X,Y + J⊤
θ̂,X

Λ
1
2

X,Y)(Λ
1
2

X,YJθ̂,XP−Λ
1
2

X,YJθ̂,X))⊤∥

=σ4
0∥(PJ⊤

θ̂,X
Λ

1
2

X,Y + J⊤
θ̂,X

Λ
1
2

X,Y)(Λ
1
2

X,YJθ̂,XP−Λ
1
2

X,YJθ̂,X)∥ (∥A⊤∥ = ∥A∥)

=σ4
0∥(P+ IP )J

⊤
θ̂,X

ΛX,YJθ̂,X(P− IP )∥

=σ4
0∥ΛX,YJθ̂,X(P− IP )(P+ IP )J

⊤
θ̂,X

∥ (Lemma 1)

=σ4
0∥ΛX,YJθ̂,X(P− IP )J

⊤
θ̂,X

∥ (P2 = P)

=σ4
0∥ΛX,Y(Jθ̂,XJ⊤

θ̂,X̃
(Jθ̂,X̃J⊤

θ̂,X̃
)−1Jθ̂,X̃J⊤

θ̂,X
− Jθ̂,XJ⊤

θ̂,X
)∥

≤σ4
0∥ΛX,Y∥∥Jθ̂,XJ⊤

θ̂,X̃
(Jθ̂,X̃J⊤

θ̂,X̃
)−1Jθ̂,X̃J⊤

θ̂,X
− Jθ̂,XJ⊤

θ̂,X
∥.

It is easy to show that ∥ΛX,Y∥ ≤ cΛ with cΛ as a finite constant. For example, when handling
regression tasks, − log p(y|g) typically boils down to 1

2σ2
noise

(g − y)⊤(g − y) where σ2
noise refers to

the variance of data noise, so −∇2
gg log p(y|g) = 1

σ2
noise

IC and cΛ = 1
σ2

noise
.

When facing classification cases, − log p(y|g) becomes the softmax cross-entropy loss. It is guaran-
teed that cΛ ≤ 2 because

∥ − ∇2
gg log p(y|g)∥ =∥ diag (softmax(g))− softmax(g)softmax(g)

⊤∥

≤∥diag (softmax(g))∥+ ∥softmax(g)softmax(g)
⊤∥

≤1 + ∥softmax(g)
⊤
softmax(g)∥ ≤ 1 + 1 = 2.

To summarize, we have the following bound for the approximation error E :

E ≤ ∥T−Σ∥+ σ2
0 = σ4

0cΛ∥Jθ̂,XJ⊤
θ̂,X̃

(Jθ̂,X̃J⊤
θ̂,X̃

)−1Jθ̂,X̃J⊤
θ̂,X

− Jθ̂,XJ⊤
θ̂,X

∥+ σ2
0 .

B How Does ELLA Address the Scalability Issues of Nyström Approximation

Existing works like NeuralEF [9] highlight the scalability issues of the Nyström approximation when
applied to NTKs, but they have been successfully addressed by ELLA, which reflects our technical
novelty. On the one hand, the cost of eigendecomposing the M ×M matrix in our case is low
considering that we set M < 104. As shown in Figure 2(a)(b), M = 2000 can lead to reasonably
small approximation errors for both the Nyström approximation and the resulting ELLA covariance.
On the other hand, the prediction cost at test time is reduced by two innovations in this work. Firstly,
looking at Equation (14), typical Nyström method first computes Jθ̂(x, i)J

⊤
θ̂,X̃

(i.e., evaluate the

NTK similarities between (x, i) and all training data X̃) and then multiplies the result with uk ∈ RM

to get the evaluation of k-th eigenfunction. So it needs to store Jθ̂,X̃ ∈ RM×P and compute M
Jacobian-vector products (JVPs). But this work proposes to first compute vk = J⊤

θ̂,X̃
uk, k = 1, ...,K

(we omit the scalar multiplier) and then obtain the evaluation of k-th eigenfunction by Jθ̂(x, i)vk.
Namely, we only need to store K vectors of size P and compute K JVPs. In most cases, M = 2000
and K = 20, so the benefits of our technique are obvious. Secondly, we leverage forward-mode
autodiff (fwAD) to efficiently compute the JVPs where we do not need to explicitly compute and
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Table 4: Test NLL of ELLA varies w.r.t. M and K (M ≥ K) on CIFAR-10 with ResNet-20 architecture. The
experiments for K ≥ 256 are time-consuming so we have not included the corresponding results here.

M \K 4 8 16 32 64 128

4 0.2689
8 0.2690 0.2561
16 0.2660 0.2548 0.2392
32 0.2655 0.2541 0.2395 0.2318
64 0.2672 0.2527 0.2398 0.2312 0.2299
128 0.2674 0.2540 0.2383 0.2310 0.2298 0.2294
256 0.2679 0.2545 0.2382 0.2310 0.2300 0.2294
512 0.2678 0.2542 0.2376 0.2315 0.2292 0.2288
1024 0.2674 0.2545 0.2385 0.2314 0.2295 0.2292
2000 0.2673 0.2551 0.2380 0.2308 0.2301 0.2295
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Figure 6: The test accuracy and ECE of ELLA vary w.r.t. the number of training data N on CIFAR-10.

store the Jacobian Jθ̂(x, i) but to invoke once fwAD. Further, fwAD enables the parallel evaluation
of JVPs over all output dimensions, i.e., we can concurrently compute Jθ̂(x, i)vk, i = 1, ..., C in
one forward pass. These techniques make the evaluation of ELLA equal to performing K forward
passes under the scope of fwAD. This is similar to other BNNs that perform S forward passes with
different MC parameter samples to estimate the posterior predictive.

C More Experimental Results

C.1 Test NLL of ELLA Varies w.r.t. K and M

Table 4 presents how the test NLL of ELLA varies w.r.t. M and K on CIFAR-10 with ResNet-20
architecture. Considering the results in Figure 2, we conclude that under the same K, a larger M can
bring closer approximation but it does not necessarily lead to a better test NLL.

C.2 Test Accuracy and ECE of ELLA Vary w.r.t. N

Figure 6 presents how the test accuracy and ECE of ELLA vary w.r.t. the number of training data N
on CIFAR-10.

C.3 Test NLL of LLA* Varies w.r.t. N

Figure 7 shows how the test NLL of LLA∗ varies w.r.t. the number of training data N on CIFAR-10.
These results, as well as those in Section 5.2, reflect that the overfitting issue of LLA generally exists.
We can also see that properly tuning the prior precision can alleviate the overfitting of LLA∗ to some
extent but cannot fully resolve it.
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(a) With prior precision tuned according to marginal likelihood

0 10000 20000 30000 40000
N

0.18

0.20

0.22

0.24

0.26

0.28

Te
st

 N
LL

ResNet20
ResNet32
ResNet44
ResNet56

(b) With fixed prior precision

Figure 7: The test NLL of LLA∗ varies w.r.t. the number of training data N on CIFAR-10. The y axis is aligned
with that of Figure 2(c).

Table 5: Comparison on the approximation error to vanilla LLA in the illustrative regression case, measured by
the KL divergence between the predictive distributions.

ELLA LLA-KFAC LLA-Diag LLA∗

KL div. 0.83 0.35 1.71 2.44

C.4 Comparison on the Approximation Error to Vanilla LLA

Table 5 lists the discrepancies between the predictive distributions of the approximate LLA method
and vanilla LLA in the illustrative regression case detailed in Section 5.3. Here, considering the
predictive distribution for one test datum is a Gaussian distribution, we use the KL divergence
between the Gaussians yielded by the method of concern and LLA as a proxy of the approximation
error (averaged over a set of test points).

C.5 More Results on CIFAR-10 Corruptions

Figure 8, Figure 9, and Figure 10 show the results of the considered methods on CIFAR-10 corruptions
using ResNet-20, ResNet-32, and ResNet-44 architectures respectively. We can see that ELLA
surpasses the baselines in aspects of NLL and ECE at various levels of skew. These results signify
ELLA’s ability to make conservative predictions for OOD inputs.
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Figure 8: NLL (Left) and ECE (Right) on CIFAR-10 corruptions for models trained with ResNet-20 architecture.
Each box corresponds to a summary of the results across 19 types of skew.
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Figure 9: NLL (Left) and ECE (Right) on CIFAR-10 corruptions for models trained with ResNet-32 architecture.
Each box corresponds to a summary of the results across 19 types of skew.
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Figure 10: NLL (Left) and ECE (Right) on CIFAR-10 corruptions for models trained with ResNet-44 architec-
ture. Each box corresponds to a summary of the results across 19 types of skew.
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