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Deep learning success
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Problems remain
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● Lack uncertainty

● Data driven (label-eager, poor robustness, etc.)



The promise of probabilistic (Bayesian) modeling
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Thomas Bayes (1702 – 1761) 

Prior beliefUncertainty

U. Cambridge
Fellow of the Royal Society (FRS)



Uncertainty: let models knowing their limits
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All models are wrong, but some models that know when they are wrong, are useful.

costly mistakes



Prior knowledge: deconstruct the black-box of the model
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Tell the machine what we know and let them focus on what we do not know.



The success of probabilistic (Bayesian) modeling
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• Prediction:

• Model selection

• Regularization

• Modeling with latent var.

Thomas Bayes (1702 – 1761) 

Prior beliefUncertainty



Probabilistic modeling meets deep learning
Research focus: Bayesian deep learning (BDL)
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Deep learning

2018

Probabilistic
modeling

2010 2011

Bayesian deep learning (BDL):
“Probabilistic” revolution of 

deep learning



Research focus: Bayesian deep learning (BDL)
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DNNs enrich probabilistic models: deep
generative models (DGMs)
Benefits: incorporating prior

knowledge

Deep learning

BDLProbabilistic
modeling

Probabilistic revolution 
of deep learning

Probabilistic modeling of DNNs :
Bayesian neural networks (BNNs)
Benefits: uncertainty estimation



Research focus: Bayesian deep learning (BDL)
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Theme II: Knowledge 
incorporation via DGMs

(NeurIPS 2017; ICCV 2019,
NeurIPS 2020; ICML 2019

workshop)

Theme I: Uncertainty
quantification via BNNs

(NeurIPS 2020; CVPR 2021;
ICLR 2021 workshop;

NeurIPS sub.)

Deep learning

BDLProbabilistic
modeling

Probabilistic revolution 
of deep learning



Research focus: Bayesian deep learning (BDL)

14

Theme II: Knowledge 
incorporation via DGMs

(NeurIPS 2017; ICCV 2019,
NeurIPS 2020; ICML 2019

workshop)

Theme I: Uncertainty
quantification via BNNs

(NeurIPS 2020; CVPR 2021;
ICLR 2021 workshop;

NeurIPS sub.)

Deep learning

BDLProbabilistic
modeling

Probabilistic revolution 
of deep learning



Uncertainty is ubiquitous
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Road conditions Traffics Pedestrian behaviors

AlexNet: lionfish, confidence 81.3% 
VGG-16: lionfish, confidence 93.3% 
ResNet-18: lionfish, confidence 95.6%

Even malicious



16

Automated diagnosis

Uncertainty is the key to bringing DL to the masses

Self-driving cars

Open set recognition

Conversational dialog systems

Active Learning

Bayesian optimization and
reinforcement learning
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Types of Bayesian uncertainty

• Model (epistemic) uncertainty
• Various interpretations for the data
• Reducible
• Models can be from same hypotheses 

class or not

• Data (aleatoric) uncertainty
• Stem from labeling noise,

measurement noise, or missing data
• Irreducible*
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Bayesian treatment of DNNs (weights) captures uncertainty

Bayesian neural networks (BNNs)
Bayesian uncertainty in DL

epistemic 
uncertainty



Methods and challenges
Core of BNNs: posterior inference
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Laplace approx. Variational inference MCMC
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Existing BNNs

• Poor performance

• Less calibrated

uncertainty estimates

• Poor scalability

Laplace approx. Variational inference MCMC

High-dim. weight space poses
fundamental obstacles for from-

scratch inference

Over-parameterization nature of
DNNs leads to collapsed weight

uncertainty

Methods and challenges
Core of BNNs: posterior inference



The Bayesian viewpoint of deterministic training
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MAP:

Variational inference (VI):



[Deng et al., NeurIPS sub.; Deng et al., CVRP 2021]
BayesAdapter: variational inference by Bayesian fine-tuning
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[Deng et al., NeurIPS sub.; Deng et al., CVRP 2021]
BayesAdapter: variational inference by Bayesian fine-tuning
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● To capture the multi-mode DNN posterior

mixture of delta (Gaussian) variational 

● To maintain parameter efficiency

parameter sharing

● To reduce the variance of stochastic gradients

Exemplar reparameterization
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Make Bayesian modeling lightweight

• A practical and theoretical sound 
BDL approach 

• Need minimal added training cost

• Promising Bayesian model
average speed

[Deng et al., NeurIPS sub.; Deng et al., CVRP 2021]
BayesAdapter: variational inference by Bayesian fine-tuning



BayesAdapter: results
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Bayesian model ensemble: one of the first
variational BNNs that beat DNNs on ImageNet

OOD robustness (resistance to over-confidence)

Uncertainty based detection of
adversarial examples Exploration in reinforcement learning (contextual bandit)



BayesAdapter: a Python library
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Is there a more scalable alternative to the weight uncertainty?
Uncertainty over the DNN structure?

27

On weights

n Hard to specifying sensible priors

n Using flexible variational posterior
for high-dim weights is expensive

n Over parameterization nature of
DNNs may lead to degenerated
weight posterior

On structure

n Impose prior beliefs more explicitly

n As shown by NAS, the network 
structure can be defined in a 
compact manner

n Learning network structure can
boost performance



Deng et al., NeurIPS 2020; Deng et al., ICLR 2021 NAS workshop
Structure uncertainty: a new BNN paradigm
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● We pre-specify the structural uncertainty and perform a first
investigation/understanding on DNNs with such structure uncertainty

training/test disparity function mode collapse generalization
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Structure uncertainty meets the advance in NAS

● Assume priors and define variationals:

● A unified training objective (ELBO):

● Continuous relaxation and reparameterization

● “Cold posterior”: sharpened concrete distribution

Deng et al., NeurIPS 2020; Deng et al., ICLR 2021 NAS workshop
Structure uncertainty: a new BNN paradigm



Structure uncertainty: results

30

Less over-confidence than BNNs with weight uncertainty

Meaningful uncertainty estimates in semantic segmentation problems

Better OOD robustness



An exciting perspective
BNNs are Gaussian processes (GPs) in the width limit

31

⟹!"#$ℎ → ∞

Neal, 1995; Lee et al., 2017

Allows us to understand neural networks (e.g. generalization properties) without
practically training them



Can deep ensemble be understood in this spirit?
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⟹ ?

Deep ensemble:

• One of the most performant prediction & uncertainty modeling
approaches

• Lack a proper Bayesian justification



Deng et al., NeurIPS sub.
Deep ensemble defines a GP posterior
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The form:



Deep ensemble defines a GP posterior
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The form:

Bayesian inference in function space: theorem on the functional ELBO:

Deng et al., NeurIPS sub.



Deep ensemble defines a GP posterior
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The form:

Bayesian inference in function space: theorem on the functional ELBO:

One can encode any 
differentiable constraints on the 

functional posterior

Deng et al., NeurIPS sub.



Deep ensemble defines a GP posterior: results
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The form:

Bayesian inference in function space: theorem on the functional ELBO:

Deng et al., NeurIPS sub.

More calibrated/reliable uncertainty estimates then standard deep ensemble



NeurIPS sub.
Uncertainty quantification methods beyond BNNs
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SDE based heteroscedastic neural networksStochastic differential equations (SDEs)



Research focus: Bayesian deep learning (BDL)
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Theme II: Knowledge 
incorporation via DGMs

(NeurIPS 2017; ICCV 2019,
NeurIPS 2020; ICML 2019

workshop)

Theme I: Uncertainty 
quantification via BNNs

(NeurIPS 2020; CVPR 2021;
ICLR 2021 workshop;

NeurIPS sub.)

Deep learning

BDLProbabilistic
modeling

Probabilistic revolution 
of deep learning
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Richard Feynman: “What I cannot create, I do not understand”

DNNs enrich probabilistic modeling
Deep generative models (DGMs)



Generative models with implicit density
Conditional Generative Adversarial Nets (GANs)
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• GANs -- a two-player minimax game: 

(Minimizing Jensen-Shannon divergence)

• cGANs – label-aware GANs: z - noise, y - label

Modeling the joint between data and label



SSL meets cGANs
Conditional generative modeling with few labels is non-trivial
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• The conditional generators in existing works exhibit inadequate 
controllability -- the generator’s ability to conditionally generate samples 
that have structures strictly agreeing with the condition

• Reason: noise z encodes some semantic info., confounding G

• Solution: disentangle the semantics of our interest and other 
variations



Deng et al., NeurIPS 2017
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A simple prior knowledge

Adversarial games for aligning joint distribution

Main theorem: unbiased equilibrium

Implemented by optimizing re-
construction error in hidden space

Adversarial
training

Structured GANs: cGANs with a structured hidden space 
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Deng et al., NeurIPS 2017
Structured GANs: results

Fixed 
label

in each 
row

Impressive 
SSL 

classification 
accuracy

Fixed style in each column 

Style
transfer



A more extreme discriminative learning scenario: UDA
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Unsupervised domain adaptation (UDA):
• the concerned domain (target domain) is unlabeled. We have only

access to labeled data from a related domain (source domain)



Marginal distribution alignment is not inadequate for UDA
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The generalization bound for UDA

Mismatch between
labeling functions

(class-conditional dist.)

Mismatch between
marginal dist.



Deng et al., ICCV 2019
Cluster alignment with a teacher for UDA
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Distribution alignment with class-conditional structure awareness:
• implement the cluster assumption of discriminative learning



Deng et al., ICCV 2019
Cluster alignment with a teacher for UDA: results
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Especially effective for class imbalanced tasks

SOTA UDA performance

Separated clusters in the feature space



DNNs are vulnerable to adversarial examples 

48

Clean images Adversarial noise Adversarial examples

Dong et al. 2018

What is the underlying distribution of adversarial examples?



In the sense of improving adversarially robustness
Modeling adversarial distribution may be helpful
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Inner maximization: generate an adversarial example

Outer minimization: train a robust classifier

min
!
1
,-
"#$

%
max
&!∈(

0 1! 2" + 4" , 6"
Classifier

Adversarial training (AT):

Generalization issue of AT under point-estimate attacker



Deng et al., NeurIPS 2020
Adversarial distributional training
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● Under mild assumption, we theoretically prove iterative optimization
method can still be used for solving the minimax problem

Inner maximization: learn an adversarial distribution

Outer minimization: train a robust classifier

min!
1
,-"#$

%
max
)(&!)∈,

7)(&!) 0 1! 2" + 4" , 6" + 89 : 4"
A probabilistic
modeling of 

heterogeneous
adversarial examples



Use DGMs to instantiate the adversarial distributions
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Adversarial distributional training: results
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Model Dominant eigenvalue
Standard 1.8301±6.3663
ATPGD 0.0242±0.0478

ADTEXP 0.0180±0.0311
ADTEXP-AM 0.0181±0.0270
ADTIMP-AM 0.0211±0.0353

(f) Comparison on the Hessian

(a) Standard

(d) ADTEXP-AM (e) ADTIMP-AM

(b) ATPGD (c) ADTEXP

The distribution captures more
diverse modes of adv. examples ADT leads to flatter loss surfaces

Superior adversarial robustness over baselines with clear margins
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Thanks!


