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Deep learning is a subset of machine learning in
artificial intelligence (Al) that has networks capable of
learning unsupervised from data that is unstructured
or unlabeled. Also known as deep neural learning or
deep neural network. Apr 30, 2019
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People also ask

Why is it called deep learning?

What is deep learning examples?

What is deep learning vs Machine Learning?

What is deep learning and how it works?

Q

Tools

Feedback

v

Feedback

Deep learning <

Deep learning is part of a broader family of machine learning
methods based on artificial neural networks. Learning can be
supervised, semi-supervised or unsupervised. Wikipedia

Deep learning books View 40+ more
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Definitions of city

Noun

a large town.
But we do not accept this fate with the torpor of other city dwellers.”

FRENCH v

/5000

aplace or situation characterized by a specified attribute.

‘panic city’

the financial and commercial district of London, England.
Reaction in the City was on the cool side, as it also tended to be in Europe.”
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Translations of city

Noun

laville  city,town, place, burgh
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Problems remain
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e lack uncertainty

3% 3% 2% 2% 1%

e Data driven (label-eager, poor robustness, etc.)

* CV systems trained on ImageNet (1M+ images)
* ASR (speech) systems trained on 11,000+ hrs of annotated data
* OntoNotes (English) NER dataset contains 625,000 annotated words




The promise of probabilistic (Bayesian) modeling

Uncertainty

p(0|D) =

U. Cambridge
Fellow of the Royal Society (FRS)

Prior belief

p(D|6)m(6) )
p (D) Thomas A:a)"es ' 702 — 1761)

REVIEW

doi:10.1038/naturel4541

Probabilistic machine learning
and artificial intelligence

Zoubin Ghahramani'

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines
that learn from data acquired through experience. The probabilistic framework, which describes how to represent and
manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning,
robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization,
data compression and automatic model discovery.



Uncertainty: let models knowing their limits

All models are wrong, but seme models that know when they are wrong, are useful.

Charlie Langton &

@charlielangton
A Tesla is trapped under a semi truck on Fort Street
near Waterman in Southwest Detroit. Two passengers

were taken to the hospital and they are in critical

condition. The driver of the semi is not hurt. @ WWJ950
@FOX2News

W 0:26 | 2.7/ XM

F4F8:14 - 2021438 11H k8 Detroit, Ml - Twitter for iPhone

costly mistakes



Prior knowledge: deconstruct the black-box of the model

Tell the machine what we know and let them focus on what we do not know.
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The success of probabilistic (Bayesian) modeling

Uncertainty Prior belief
(1D = PLIOm®)
(D) Thomas Bayes (1702 — 1761)
* Prediction: p(x|D,H) = Jp(xIH,D,H)p(GID)dO

* Model selection p(D|H;) =?(or <?) p(D|H,) p(D|H) = jp(DIH)p(HIH)dH

* Regularization max logp(y|X,w) + log p(w)

p(%,2)
p(x)

* Modeling with latent var. p(z|x) =

x p(2)p(x|z 6)
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Research focus: Bayesian deep learning (BDL)
Probabilistic modeling meets deep learning

2010 2011

Probabilistic
modeling

Bayesian deep learning (BDL):

“Probabilistic’’ revolution of

‘ deep learning

Deep learning

11



Research focus: Bayesian deep learning (BDL)

Probabilistic
‘ modeling BDL

Probabilistic revolution
of deep learning

e
8
\E

ho

Deep learning

Probabilistic modeling of DNNs : DNN: s enrich probabilistic models: deep
Bayesian neural networks (BNNs) generative models (DGMs)
Benefits: uncertainty estimation Benefits: incorporating prior

knowledge

12



Research focus: Bayesian deep learning (BDL)

Probabilistic
BDL

modeling
® ®

Probabilistic revolution
of deep learning

Deep learning

e

Theme |: Uncertainty
quantification via BNNs

(NeurlPS 2020; CVPR 2021;
ICLR 2021 workshop;
NeurlPS sub.)

Theme Il: Knowledge
incorporation via DGMs

(NeurlPS 2017; ICCV 2019,
NeurlPS 2020; ICML 2019
workshop)
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Research focus: Bayesian deep learning (BDL)

Probabilistic
BDL

modeling
® ®

Probabilistic revolution
of deep learning

Deep learning

yrdd

Theme |: Uncertainty
quantification via BNNs

(NeurlPS 2020; CVPR 2021;
ICLR 2021 workshop;
NeurlPS sub.)
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Uncertainty is ubiquitous

Road conditions

Even malicious

AlexNet: lionfish, confidence 81.3%
VGG-1 6: lionfish, confidence 93.3%
ResNet- 1 8: lionfish, confidence 95.6%

15



Uncertainty is the key to bringing DL to the masses

Total number of bacteria classes

Automated diagnosis
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You have $1,847 51
across your 3 sccounts.
@ i
doing?
Your last payday was on
the 1st of November.

Who has the best record
in the NBA?

Sorry, | can only answer /

Questions about banking.
Figure 1: Example exchanges between a user (blue,
right side) and a task-driven dialog system for personal
finance (grey, left side). The system correctly identi-
fies the user's query in (1, but in (2) the user’s query
is mis-identified as in-scope, and the system gives an
unrelated response. In (3 ) the user’s query is correctly
identified as out-of-scope and the system gives a fall-
back response.

Bayesian optimization and

reinforcement learning

|- \
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Types of Bayesian uncertainty

I

H:’“ adi K

° & @ﬁﬁeﬁw

* Model (epistemic) uncertainty * Data (aleatoric) uncertainty

* Various interpretations for the data * Stem from labeling noise,
 Reducible measurement noise, or missing data
* Models can be from same hypotheses * Irreducible*

class or not



Bayesian uncertainty in DL
Bayesian neural networks (BNNs)

Bayesian treatment of DNNs (weights) captures uncertainty

posterior

epistemic
uncertainty

18



Core of BNNs: posterior inference

Methods and challenges

Laplace approx.

Variational inference

c®oe oo ®

MCMC

19



Core of BNNs: posterior inference
Methods and challenges

cIm®oe oo ®

MCMC samples

p(w|D)

Laplace approx. Variational inference MCMC

Input to another layer above
(image with 8 channels)

High-dim. weight space poses Existing BNNs
_ fundamental obstacles for from-
N scratch inference * Poor performance
» * Less calibrated
® . uncertainty estimates
Over-parameterization nature of
DNNs leads to collapsed weight *  Poor scalability

00 e uncertainty

20



The Bayesian viewpoint of deterministic training

Maximum a Posteriori (MAP)

® Take a mode of the posterior, or

x* € argmax p(z|y)

&I

arg max p(z | y)

Elz |y

p(y)

MAP:  max > 3 llogp(y e w)] + - log p(w)

.. . 1 i)y (i 1
Variational inference (VI): maxo Eqwio) [~ > logp(y"|z; w)] — - Dxw (g(w]0)][p(w))
Lon ce

21



BayesAdapter: variational inference by Bayesian fine-tuning

[Deng et al., NeurIPS sub.; Deng et al., CVRP 2021]

Variational family _» True posterior py (z|x)

Approximation error”

Optimal varitional
posterior q*(z)

Optimize KL(qy(2)||pe (2]x))

Variational BNN
@‘ﬂ {x(i)}yill

:\ih(i) = m(i)@wi/\ &z(i) = x(i)@wgi); wgi) ~ q(w1|91ﬂ
/ l ~ Adaptation l A 4
O R @(i) = hD@w; wl ~ q(wzlﬂzﬂ 5
I [
A9 = hPQuw Ez(i) = h(i)@w:(,,i); w:(,f) ~ q(w3|93)]
\ / Iy Y ;

l l grad. -------:

2 MC estimate of :

Predictions Complexity loss

expected log-likelihood

22



BayesAdapter: variational inference by Bayesian fine-tuning
[Deng et al., NeurIPS sub.; Deng et al., CVRP 2021]

Validation

e To capture the multi-mode DNN posterior

mixture of delta (Gaussian) variational

T—d
Space of solutions

Training

E— -]
g e To maintain parameter efficiency
wo N\ .' - parameter sharing
—_— ﬁ \

def BayesAdapter conv(x, theta, stride, padding, groups):
b = x.shape[0]

w = mc_sample(theta, num mc_samples=b)
w - w.flatten(start_din-0, end din-l] e To reduce the variance of stochastic gradients
x = x.flatten(start_dim=0, end_dim=1).unsqueeze(0)
y = conv2d(x, w, stride, padding, groups*b)

Exemplar reparameterization

return y.view(b, -1, y.shape[2], y.shape[3])

23



BayesAdapter: variational inference by Bayesian fine-tuning
[Deng et al., NeurIPS sub.; Deng et al., CVRP 2021]

Make Bayesian modeling lightweight

A practical and theoretical sound
BDL approach

Need minimal added training cost

Promising Bayesian model
average speed

225 2.117

1.5

0.75

Inference time per batch (s)

0.035 0.061 0.065

Deterministic layers

Bayesian

I I Is‘ubm.d

ule

—
p

0.779

MAP LiBRe LMFVI MFVI MC dropout

(a) Inference speed comparison
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BayesAdapter: results
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Exploration in reinforcement learning (contextual bandit)
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BayesAdapter: a Python library

& thudzj/ ScalableBDL

<> Code 1% Pull requests (») Actions [71] Projects [ Wiki () Security |~ Insights 51 Settings

¥ master ~ ¥ 3branches © 0 tags Go to file Add file ~

" thudzj Update readme +/ 243b8b8 yesterday ‘& 82 commits
docs Update bib.txt 9 months ago
[0 reproduction Update finetune_imagenet.py 9 months ago
0 scalablebdl Update readme yesterday
[ .gitignore Release 0.0 9 months ago
[ README.md Update readme yesterday
[%  demo.py Update readme yesterday
[ license.txt v0.0.1 9 months ago
[ requirements.txt U 9 months ago
[%  setup.py Update setup.py 9 months ago
‘= README.md 4

A plug-and-play implementation for Bayesian fine-tuning
to practically learn Bayesian Neural Networks



Uncertainty over the DNN structure!?
Is there a more scalable alternative to the weight uncertainty?

On weights

Hard to specifying sensible priors

Using flexible variational posterior

for high-dim weights is expensive

Over parameterization nature of
DNNs may lead to degenerated
weight posterior

On structure

'5.

Impose prior beliefs more explicitly

As shown by NAS, the network
structure can be defined in a
compact manner

Learning network structure can
boost performance

27



Structure uncertainty: a new BNN paradigm
Deng et al., NeurIPS 2020; Deng et al., ICLR 2021 NAS workshop

e We pre-specify the structural uncertainty and perform a first

investigation/understanding on DNNs with such structure uncertainty

100 25
2.0
80
Train Accuracy
z 1.5
8 Test Accuracy
= 60 .
g Train Loss
= Test Loss [
40
- 0.5
20 T T T T T T 0.0
0 50 100 150 200 250 300

Epochs

training/test disparity

Loss

Accuracy

0.967 A

2
o
X
W

0.961

function mode collapse

(-

0.963 1

Wwww

——NSA-i
——NSA-id

0 100 200 300 400 500
Number of architectures to ensemble

(=] b— 8] w B W (=) ~
1 1 1 1 1

7 B Seen architectures

Unseen architectures

95.25 9550  95.75

96.00 9625  96.50

generalization
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Structure uncertainty: a new BNN paradigm
Deng et al., NeurIPS 2020; Deng et al., ICLR 2021 NAS workshop

Structure uncertainty meets the advance in NAS 6,
e Assume priors and define variationals: |
p(o, w) = p(a)p(w) q(o, w) = g(a[0)d(w — wo) @ v’v
p(@) = [l P@C))  g(ald) = TTic; alat]60) {@: ‘ 1
i=1:N

e A unified training objective (ELBO):

mingeg Dkr(q(e, w)||p(e, w|D)) = —Ey(a,w)log p(D|ex, w)] + Dkr(g(e, w)||p(er, w)) + constant.
e Continuous relaxation and reparameterization

o) = g(60), 30D D)) = softmax((0%7) + B ) /1),
e “Cold posterior”: sharpened concrete distribution

29



Structure uncertainty: results

Method | DBSN | MAP | MAP-fixeda | MCdropout | BBB | FBN | NEK-FAC
CIFAR-10 | 0.0109 | 0.0339 0.0327 0.0150 | 0.0745 | 0.0966 | 0.0434
CIFAR-100 | 0.0599 | 0.1240 0.1259 0.0617 | 0.0700 | 0.1091 | 0.1665

Less over-confidence than BNNs with weight uncertainty

Meaningful uncertainty estimates in semantic segmentation problems

-*- DBSN -+~ MAP-fixed a -+~ NEK-FAC -+- DBSN -+~ MAP-fixed a -+~ NEK-FAC — DBSN — MAP-fixed a — NEK-FAC — DBSN — MAP-fixed a — NEK-FAC
MAP -+~ MC dropout MAP -~ MC dropout MAP —— MC dropout MAP —— MC dropout
1.0 1.0 1.0
—
————— 14
——————
-————— e
g = ’.__—: — @ 0.8 o 0.8
7 1.~ et B 12 {=d g
e 'z --1 < €
> > ! o L 8 os 8
i - . 0.6
9 g AP (ST " Sy 025 b
o 4 7 ’ -~ ~. o o Q
E =1 (AP (0 S 5w [}
I+ 5 s 085 2 -
o P /: - B o4 Boa
R | 3 3
Pl 4 = €
- ,/ 0.6 = -}
2 Qo2 O o2
4
i 04
4
g 0.0 0.0 0.0
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 00 02 04 06 08 1.0 12 14 16 18 0.0 0.5 1.0 15 2.0 25 3.0
Perturbation size Perturbation size Entropy Entropy

Better OOD robustness
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BNNs are Gaussian processes (GPs) in the width limit
An exciting perspective

cov(fy) = K(X., Xs) — K(Xo, X)[K(X, X) + 021

> ¢

Neal, 1995; Lee et al., 2017

2_
Output
o)
Hidden layer : R
S
0_1
Tin
Input
_2\
-5 0
input, x

N (fs, cov(f.)), where
E[f.|X,y, X.] = K(X,, X)[K(X,X)+ 21y,
"K(X, X,)

Allows us to understand neural networks (e.g. generalization properties) without
practically training them



Can deep ensemble be understood in this spirit?

Deep ensemble:

* One of the most performant prediction & uncertainty modeling
approaches

* Lack a proper Bayesian justification

Ensemble’s prediction
(e.g., majority vote)

Predictions

predictors

ing classifier predictions

32



Deep ensemble defines a GP posterior
Deng et al., NeurIPS sub.

The form: q(flwy, ..., wr) = GP(fImg(x), kq(x, x')),

33



Deep ensemble defines a GP posterior
Deng et al., NeurIPS sub.

The form: q(flwy,...,wy) = GP(flmy(x), ky(z, x')),
ma(@) = 37 D 9@ w),
M -
> (gl wi) — mg(x)) (9(', w;) — mq(z'))" + M.

1=1

1

Bl of) = T

Bayesian inference in function space: theorem on the functional ELBO:

L= 3 Eyplogpwilf(@:))] — Dirlg(X)|p(EX)

(m‘i ’yl)eD

— log p(D) — D [a(f%)||p(£X|D)] < log p(D),
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Deep ensemble defines a GP posterior
Deng et al., NeurIPS sub.

The form: q(flwy, ..., wr) = GP(fImg(x), kq(x, x')),

mg(@) = 22> glw, ),

M -
k(') = 22 3 (9w, w0) = my (@) (9(a'w0) = my(@)” + M

Bayesian inference in function space: theorem on the functional ELBO:

L= 3 Eypllogp(yil ()] — DxwlafX)llp(E%))

(m‘i ’yl)eD

= log p(D) — Dxw[a(f)[[p(¥|D)] < log p(D),

prior
distribution

likelihood posterior
model regularization One can encode any
differentiable constraints on the
functional posterior

RegBayes:

Optimization

posterior
distribution

35



Deep ensemble defines a GP posterior: results
Deng et al., NeurIPS sub.
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More calibrated/reliable uncertainty estimates then standard deep ensemble
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Uncertainty quantification methods beyond BNNs
NeurIPS sub.

Stochastic differential equations (SDEs)

inputs

init layer

SDE-block

@)
% Zy

- -
v

Euler scheme

mean layer

SA190u y1ip

variance layer

3 10M39U DQISNJIP

SDE based heteroscedastic neural networks

1

et .
—> —> 1u(x®)
1

]
1
=% +f (zk, @)f) *At+g (zk, @E) VAW, :
]

1

1

8@ ,
— —> 62(x®)
1

Dataset Metric MCD DGP BNN | Deep-ens HNN Proposed
RMSE 697.021 651.341 786.694 533.426 559.354 483.639+2.657
Metro-traffic | R? 1 0.877 0.892 0.843 0.928 0.920 0.939+0.011
CWCE 52152 10.552 21.486 9.078 9.305 2.8944-0.085
EPIW 167859 | 1168.044 610.662 814.143 883.475 539.254+19.334
R-CWCE 6.428 1.136 3.373 0.655 0.747 0.177+0.014
RMSE 625.812 523.041 720.013 428.032 421.752 340.331+5.072
Pickups R? 4 0.878 0.914 0.838 0.943 0.945 0.964+-0.012
CWCE 34.441 22.799 42.570 4.878 6.043 2.9251+0.758
EPIW 313432 | 1872.481 247.229 684.381 688.989 438.324+19.222
R-CWCE 4.205 1.951 6.904 0.280 0.335 0.173+0.012
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Probabilistic
BDL

modeling
® ®

Probabilistic revolution
of deep learning

Deep learning

Research focus: Bayesian deep learning (BDL)

Theme Il: Knowledge
incorporation via DGMs

(NeurlPS 2017; ICCV 2019,
NeurlPS 2020; ICML 2019
workshop)

38



Deep generative models (DGMes)
DNNs enrich probabilistic modeling

Richard Feynman: “What | cannot create, | do not understand”

| CFSAL| ghslA

TR Ve

Model family, loss function,

S ) I optimization algorithm, etc.
PR BN

Data Prior Knowledge
Learning

Image x d —] A probability =P probability p(x)

distribution

p(x) I.{ ¥
Sampling from p(x) generates new images: g b : '." '~

39



Conditional Generative Adversarial Nets (GANs)
Generative models with implicit density

— G — G(2) Real
D —or
Fake

* GAN:Ss -- a two-player minimax game: X
Hgn mg'x ‘C(Da G) = Emwpdata(m) [log(D(a:))] + Ez'vp(z) [1 - log(D(G’(z)))],

(Minimizing Jensen-Shannon divergence)

* cGANs — label-aware GAN:is: z - noise, y - label

m(;n III)la,X £wy = E(m,y)wp(m,y) [lOg(Dmy (w, y))] + Eyrvp(y),zfvp(z) [lOg(l - Dmy(G(y7 Z), y))]

Modeling the joint between data and label

40



Conditional generative modeling with few labels is non-trivial
SSL meets cGANs

* The conditional generators in existing works exhibit inadequate

controllability - the generator’s ability to conditionally generate samples
that have structures strictly agreeing with the condition

* Reason: noise z encodes some semantic info., confounding G

* Solution: disentangle the semantics of our interest and other
variations

41



Structured GANSs: cGANs with a structured hidden space

Deng et al., NeurIPS 2017
@) @ @ @
B I(x) e C(x)

QO QO }f @1 QD @
G(yz) :<J:>' 19| : I<:>'
)1 I@ & (29

e ./ \
(d) (e)

/___

A simple prior knowledge

p(y|G(y,21)), pe 22~p@)|  Implemented by optimizing re-
minE; (o) [pi(2|G (1, 2)), pi(z|G (32, 2))]. V31,32~ p(y) | construction error in hidden space

minE, .
C.G y~p(y)

Adversarial games for aligning joint distribution

m(%n max Loy = Ez,y)~p(e,y)[108(Day (2, Y))] + Eynp(y),z~p(z) [108(1 — Dy (G(y, 2), y))]} Adversarial
zy

minmax Loz = Egmp(z) [108(Dez (2, I(x)))] + Eznp(z),y~p@)[108(1 — Dz2(G(y, 2), 2))] training

I,G sz
Main theorem: unbiased equilibrium

Theorem 3.3 Minimizing R, w.r.t. I will keep the equilibrium of the adversarial game L ,. Sim-
ilarly, minimizing R, w.rt. C will keep the equilibrium of the adversarial game L, unchanged.
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Structured GANSs: results
Deng et al., NeurIPS 2017

Method MNIST SVHN CIFAR-10
n =20 n =50 n = 100 n = 1000 n = 4000 .
Ladder [22] - i 0.89(20.50) - 2040(0047)  mpressive
VAE [12] - - 3.33(+0.14) | 36.02(20.10) - SSL
CatGAN [28] ; - 1.39(£0.28) - 19.58(<0.58) P
ALT [5] ] ] - 73 183 classification
ImprovedGAN [27] | 16.77(+4.52) 2.21(£1.36) 0.93(£0.07) | 8.11(£1.3) | 18.63(£2.32) accuracy
TripleGAN [15] | 5.40(£6.53) 1.59(+0.69) 0.92(+0.58) | 5.83(%0.20) | 18.82(+0.32)
SGAN 4.0(+4.14)  1.29(+0.47) 0.89(=0.11) | 5.73(£0.12) | 17.26(0.69)

Table 2: Comparisons of semi-supervised classification errors (%) on MNIST, SVHN and CIFAR-10 test sets.

6012349567839
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A more extreme discriminative learning scenario: UDA

Unsupervised domain adaptation (UDA):
* the concerned domain (target domain) is unlabeled. We have only
access to labeled data from a related domain (source domain)

44



Marginal distribution alignment is not inadequate for UDA

The generalization bound for UDA

1
et(h) < €5(h) + Sduan(s,t)
+ min (e, (h, ) + ex(h, 1))
. . \ heH .
marginal dist. <e(h)+ %dqmﬂ(s,t) Hertta ) Mismatch between

— - labeling functions
oinlealh, ) +arlh, L)) (class-conditional dist.)

Mismatch between

Existing methods Adapted Adapted




Cluster alignment with a teacher for UDA

Deng et al., ICCV 2019
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Distribution alignment with class-conditional structure awareness:
* implement the cluster assumption of discriminative learning
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Cluster alignment with a teacher for UDA: results

Deng et al., ICCV 2019

Method SVHN to MNIST MNIST to USPS USPS to MNIST

RevGrad [7] 274+63 26720 179+14
MSTN [49] 258+36 30310 294+0.5
CAT 100.0 £ 0.05 100.0 0.0 99.9£0.2

Especially effective for class imbalanced tasks

el
v'. 3 ¥ = A" ;
i S

Separated clusters in the feature space

Method SVHN to MNIST MNIST to USPS USPS to MNIST
Source Only 60.1+1.1 752416 5H7.1+1.7
DDC [45] 68.1+0.3 79.1+0.5 66.5=+3.3
CoGAN [20] - 91.2+0.8 89.1+0.8
DRCN [8] 82.0+0.1 91.8+0.09 73.7+0.04
ADDA [44] 76.0+1.8 89.44+0.2 90.1+0.8
LEL [26] 81.0+0.3 - -
AssocDA [11] 97.6 - -
MSTN [49] 91.7+15 929+1.1 -
CAT 98.1+1.3 90.6+2.3 809+3.1
RevGrad [7] 73.9 771+1.8 73.0+2.0
RevGrad+CAT 98.0+0.8 93.7+1.1 95.7+1.3
rRevGrad+CAT 98.8 £0.02 94.0+0.7 96.0+0.9
MCD [37] 96.2+0.4 94.24+0.7 94.1+0.3
MCD+CAT 97.14+0.2 96.3+0.5 95.2+04
VADA [41] 94.5 - -
VADA+CAT 95.2 - -

SOTA UDA performance
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DNNs are vulnerable to adversarial examples

Clean images Adversarial noise  Adversarial examples

o ¢
al-b »,

Dog: 99.99% Dong et al. 2018

Puffer: 97.99% Crab: 100.00%

What is the underlying distribution of adversarial examples? "



Modeling adversarial distribution may be helpful
In the sense of improving adversarially robustness

Outer minimization: train a robust classifier
1

Adversarial training (AT):

|

' n
0= maxL(fo (i +8),30)
min — max X ] ;
6 n 5.€5 0 \Ai i) Vi
=1 \ J
. . . ' .
Inner maximization: generate an adversarial example

Classifier

Generalization issue of AT under point-estimate attacker

Model [ Anae | FGSM | PGD-20 [ PGD-100 [ MIM | C&W | FeaAttack [  Aob
Standard 94.81% 12.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ATrosm 93.80% | 79.86% 0.12% 0.04% 0.06% 0.13% 0.01% 0.01%
ATpp' 87.25% | 56.04% | 4588% | 4533% | 47.15% | 46.61% | 46.01% | 44.89%
ATpGp 86.91% | 5830% | 50.03% | 49.40% | 51.40% | 50.23% | 50.46% | 48.26%
ALP 86.81% | 56.83% | 4897% | 48.60% | 50.13% | 49.10% | 48.51% | 47.90%
FeaScatter || 89.98% | 77.40% | 70.85% | 68.81% | 72.74% | 58.46% 37.45% 37.40%
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Adversarial distributional training
Deng et al., NeurIPS 2020

Outer minimization: train a robust classifier

A probabilistic | & |

heT:rieg"ezgezils min— ) max_Ep s [L(fo Cxi + 61, y)] + AH(p(6)))
=1

adversarial examples l \ | ’

Inner maximization: learn an adversarial distribution

e Under mild assumption, we theoretically prove iterative optimization
method can still be used for solving the minimax problem
Theorem 1. Suppose Assumptions 1 and 2 hold. We define p(0) = maxps,)cp J (p(di), 0), and

P*(0) = {p(d;) € P : T(p(8:),0) = p(8)}. Then p(8) is directionally differentiable, and its
directional derivative along the direction v satisfies

p'(B;v)=  sup v'VeJT(p(6:),0). 6)
p(6;)EP*(0)

Particularly, when P*(0) = {p*(9;)} only contains one maximizer, p(0) is differentiable at @ and

Vop(0) = VoJ (p*(:),0). (7
50



Use DGMSs to instantiate the adversarial distributions

tanh,* €

+/

r~N(0,1)

¥

(a)

DGM with
explicit density

tanh,* €
t
+ /*

r~N(0,1)

)

©

(b)
DGM with

explicit density
(amortized version)

tanh,* €
9o 2~U(=1,1)
VA
()
DGM with

implicit density
(amortized version)
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Adversarial distributional training: results

® PGD ® PGD ® PGD
EXP EXP EXP

® PGD ® PGD ® PGD
EXP EXP EXP

The distribution captures more
diverse modes of adv. examples

0 0
ed S ed
10010

(a) Standard ’ ’ (b) ATpcD

ed
LTw

o
ed

(c) ADTExp

Model

Dominant eigenvalue

Standard

1.8301+6.3663

ATpcp

0.0242+0.0478

ADTexp

0.0180+0.0311

w  ADTEgxp-am

0.0181+0.0270

ADTimvp-am

o - o -
5 s
5 Z . s -
ed 2010 cd ed 10 ed

0.0211+0.0353

(é) ADTEexp-am : (;}) ADTivp-am *

(f) Comparison on the Hessian

ADT leads to flatter loss surfaces

Model || Anat ] FGSM | PGD-20 | PGD-100 | MIM | C&W [ FeaAttack | Arob
Standard 94.81 % 12 05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ATrGsm 93.80% 79.86 Y 0.12% 0.04% 0.06% 0.13% 0.01% 0.01%
ATpcp! 87.25% 56.04% 45.88% 45.33% 47.15% 46.67% 46.01% 44.89%
ATpcp 86.91% 58.30% 50.03% 49.40% 51.40% 50.23% 50.46% 48.26%
ALP 86.81% 56. 83% 48. 97% 48 60% 50 13% 49 10% 48.51% 47. 90%

FeaScatter 89.98% 77.409 70.859 68.81% 2.74 58.46 % 37.45% 37.40¢
ADTEexp 86.89% 60.41% 52 18% 51 69% 53 27 % 52 49% 52.38% 50 56%
ADTExp-am 87.82% 62.42% 51.95% 51.26% 52.99% 51.75% 52.04% 50.04 %
ADTivp-am 88.00% 64.89 % 52.28% 51.23% 52.64% 52.65% 51.89% 49.81%

Superior adversarial robustness over baselines with clear margins
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Thanks!
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