
Deep Spectral Methods: Another
Way to Unsupervised Learning

Zhijie Deng
Qing Yuan Research Institute
Shanghai Jiao Tong University

zhijied@sjtu.edu.cn

1



2

Unsupervised learning is critical for creating human-
level intelligence

Cream: supervised learning 
(10->10,000 bits per sample) 

Cake: unsupervised learning 
(Millions of bits per sample) 

Cherry: reinforcement learning 
(A few bits for some samples) 

[Yann LeCun’s Cake Analogy, NIPS ‘16]
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The recent breakthroughs

ChatGPT/GPT-4
[Image source:

https://www.sfgate.com/te
ch/article/chatgpt-openai-

everyday-guide-
17777804.php]

Stable Diffusion
[Image source:

https://jalammar.github.io/i
mages/stable-

diffusion/stable-diffusion-
diffusion-process.png]

Motivate the rapid progress in AIGC, AIGA, AIGX…

CLIP
[Image source:

https://openai.com/researc
h/clip]
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The learning goal has not converged

• Contrastive/non-contrastive learning (InfoMax)

• Language modeling (estimate densities):

• Score-based modeling (estimate scores, i.e., gradients of log density):

[image source:
https://thegradient.pub/
understanding-
evaluation-metrics-for-
language-models/]
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Another viable way – spectral methods (learning eigenfunctions 𝜓)

It is a long-standing
approach in machine

learning for
unsupervised learning.

[Aarti Singh, 2011]
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Why learning eigenfunctions

maximizing the variation of data
representations

v.s.

maximizing mutual information
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Why learning eigenfunctions

SSGE (Shi et al., ICML 2018)

Stein’s Lemma (1972)

Spectral methods seem to capture more information than generative modelling
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Eigenfunctions defined on the kernel integral operator
𝑇!𝑓 𝑥 := 𝔼"#∼% 𝑘 𝑥, 𝑥# 𝑓 𝑥#

𝔼"#∼% 𝑘 𝑥, 𝑥# 𝜓 𝑥# = 𝜇𝜓 𝑥

• Similar to the infinite-dim matrix eigenvalue problem:

𝐾𝑢 = 𝜆𝑢
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Eigenfunctions defined on the kernel integral operator
𝑇!𝑓 𝑥 := 𝔼"#∼% 𝑘 𝑥, 𝑥# 𝑓 𝑥#

• It seems to be a good learning principle. Why less used today?

Ø Scaling is a problem for nonparametric methods 

Ø Cannot leverage inductive bias such as equivariance
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An example of the classic approach (Nystrom method)

φ(x)T 𝑘(X, X)Eigenvector(                 , K )φ(X)

x
D

f
K

𝑘(x, X)

𝜓 𝑥 = 𝑘 𝑥, 𝑋 [
𝑣!
𝜇!
, … ,

𝑣"
𝜇"
]
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Spectral methods + deep learning

Spectral methods:
learn eigenfunctions;
usually nonparametric

Deep learning:
expressive; parametric

𝔼!"∼$ 𝜅 𝑥, 𝑥" 𝜓 𝑥" = 𝜇𝜓 𝑥
NNs

Learn neural eigenfunctions



An objective for learning neural eigenfunctions
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max
%!

𝑅&& − ∑'()
&*) +"!

#

+""
𝑠. 𝑡. 𝔼!"∼$ 𝜓& 𝑥" , = 1, 𝑗 = 1,… , 𝑘

𝑅'& = 𝔼!,!"∼$ 𝜓' 𝑥 𝜅 𝑥, 𝑥" 𝜓&(𝑥′)

• Can be seen as a function-space generalization of EigenGame [Gemp et al., 

2020] which works on PSD matrices

L2 Batch normalization 

Deng, Shi & Zhu, ICML’22



The neural eigenfunctions of kernels defined with
random MLPs
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The spectral principle for representation learning

• Such a principle dates back to spectral clustering [Shi & Malik, 2000] and 
Laplacian Eigenmaps [Belkin & Niyogi, 2003]

the eigenmap of data

• The outputs of principal eigenfunctions are representations that optimally 
preserve local neighborhoods on data manifolds (min-cut of a graph)

[Source: https://developer.nvidia.com/discover/cluster-analysis]



• The contrastive kernel

• 𝜅 𝑥, 𝑥" =
.$ %& $ 𝑥 �̅� $ 𝑥" �̅�

$ ! $(!")
𝑝 𝑥 �̅� : augmentation distribution

[HaoChen et al., 2021; Johnson et al., 
2022]

• The kernel can reflect semantic 
closeness 

Key to generalizing this principle to domains of interest
- the choice of the kernel
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…

…



Deng*, Shi*, et al., 2022
Eigenfunctions are strong self-supervised learners
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𝑔#1,%

𝑔#12,%

L2
normalize
over the
batch dim.

-𝑋&

𝑋&

𝑋&'

Deng*, Shi*, Zhang, Cui, Lu & Zhu. Neural Eigenfunctions Are Structured Representation Learners. arXiv:2210.12637, 2022. 

Stop gradient



One merit
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𝑔#1,%

𝑔#12,%

L2
normalize
over the
batch dim.

-𝑋&

𝑋&

𝑋&'

• The features are ordered by their relative importance due to the convergence to 
ordered eigenfunctions (principal eigenfuncs contain more critical info from kernel)

• The features are orthogonal to others in function space, so redundancy is minimized

• So we can adapt representation length according to cost-quality tradeoff



The comparison to Barlow Twins (Zbontar et al., 2021)
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Barlow Twins Ours
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Unsupervised image retrieval at different levels of 
representation truncation
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Unsupervised image retrieval at different levels of 
representation truncation

Neural Eigenmap requires up to 16× fewer representation dimensions 
than the competitors to achieve similar retrieval performance



Images that excite the neural eigenfunctions most
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ImageNet linear probe accuracy with ResNet-50 encoder
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Comparison on ImageNet linear probe accuracy with 
various training epochs
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Transfer learning on COCO detection and instance 
segmentation
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Neural Eigenmaps for graph-structure data
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• Learning eigenfunctions provides a unifying surrogate objective for 
representation learning

• The normalized adjacency matrix for a graph is

• We propose to treat �̅� as the gram matrix of �̇�(𝑥, 𝑥) on 𝑋

• The kernel may not be positive semidefinite, so we make a fix to our 
theorem and show that when the kernel has at least 𝑘 − 1 positive 
eigenvalues, we can still use that optimization problem to discover the 𝑘
principal eigenfunctions.



Neural Eigenmaps for graph-structure data

26

MLP

Neural Eigenmaps 𝑔3',4

… …

Node features 𝑋5

The learning objective

Embedded
into



Neural Eigenmaps can also beat Laplacian Eigenmaps and GCNs!
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• We operate on OGBN-Products [Hu et al., 2020], one of the most 
large-scale node property prediction benchmarks, with 2, 449, 029 
nodes and 61, 859, 140 edges

• Our method is much faster than GCNs in the test phase because GCN 
needs to aggregate information from the graph while our methods 
doesn’t 
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Spectral clustering for unsupervised semantic segmentation
Challenges

[Melas-Kyriazi et al., 2022]

• The scalability issue: computing the eigenvectors of the 𝑁𝑃,-by-𝑁𝑃, matrix 
over a large dataset is intractable (𝑃, is the number of patches in a picture)

• The inference still involves matrix decomposition
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Deng & Luo, ICCV 2023

Unsupervised semantic segmentation by learning
eigenfunctions
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Unsupervised semantic segmentation by learning
eigenfunctions



Scaling up Neural Tangent Kernels (NTKs)
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Approximating NTKs of ResNet-20 

• NTKs are powerful kernels and important tools for understanding deep learning 

• Scaling NTKs has been painful: 1K random features = 1K forward/backward passes 

• Replace random features with neural eigenfunctions! 

Mercer’s theorem: 𝜅(𝑥, 𝑥′) = ∑!"#𝜇!𝜓! 𝑥 𝜓! 𝑥′



• The functional predictive for linearized Laplace approximation:

• Introduce NeuralEF to approximate the NTK:

Deng, Zhou & Zhu, NeurIPS’22
Accelerate Laplace approximation with approximated NTK

32
Deng, Zhou & Zhu. Accelerated Linearized Laplace Approximation for Bayesian Deep Learning. NeurIPS 2022. 
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Solve PDEs by eigendecomposition

• The time-independent Schrodinger equation for a single particle with 
mass m in a potential field V(x) is a PDE of the form:

whose solutions describe the wavefunctions 𝜓(𝑥)with unique energy 𝐸

David Pfau et al., Spectral Inference Networks: Unifying Deep and Spectral Learning. ICLR’19
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Learn the solving operator for PDEs

𝑇6𝑓 𝑥 := 𝔼!"∼$ 𝑘 𝑥, 𝑥" 𝑓 𝑥"

• The current approach: given 𝑇6, estimate 𝜇, 𝜓

• A new problem: given 𝑇6𝑓' = 𝑢' , 𝑖 = 1,… ,𝑁, estimate 𝜇, 𝜓

ü Can recover the kernel integral operator from 𝜇, 𝜓

ü Corresponds to the Green’s function method for solving PDE
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Learn the solving operator for PDEs
Xiao, Hao, Lin, Deng* & Su*, 2023

• Orthogonal neural operator

• Orthogonal attention
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Learn the solving operator for PDEs
Xiao, Hao, Lin, Deng* & Su*, 2023

• Improved generalization ability
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Future direction: the integration of neural
eigenfunctions and score-based models

Will generative modelling and representation learning eventually 
converge to a single method? 
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Takeaways

• Spectral methods can lead to a framework of unsupervised

learning

• Replacing nonparametric methods with a deep functional 

representation is fruitful.
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Thanks!
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