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Unsupervised learning is critical for creating human-
level intelligence

Cherry: reinforcement learning
(A few bits for some samples)

'''''

Cream: supervised learning
(10->10,000 bits per sample)

Cake: unsupervised learning ’g

(Millions of bits per sample) -—

[Yann LeCun’s Cake Analogy, NIPS ‘16]



The recent breakthroughs
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The learning goal has not converged

Contrastive/non-contrastive learning (InfoMax)

Language modeling (estimate densities):

S = Where are we going [image source:
| [ https://thegradient.pub/
T understanding-

_ _ evaluation-metrics-for-
Previous words wWord being
(Context) predicted Ianguage-models/]

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)

Score-based modeling (estimate scores, i.e., gradients of log density):

dXt = —§t3 Xt dt + \/ dwt

drift term dlffu3|on term
A

1
dXp= —5,5(1‘)xt — B(t)Vx, log q;(x¢) | dt + +/B(t) dew,

“Score Function”




Another viable way — spectral methods (learning eigenfunctions )

It is a long-standing
approach in machine
learning for

unsupervised learning.
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Other versions
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software.

2.2. Manifold learning

2.2.1. Introduction

2.2.2. Isomap

2.2.3. Locally Linear Embedding
2.2.4. Modified Locally Linear
Embedding

2.2.5. Hessian Eigenmapping
2.2.6. Spectral Embedding
2.2.7. Local Tangent Space
Alignment

2.2.8. Multi-dimensional Scaling
(MDS)

2.2.9. t-distributed Stochastic
Neighbor Embedding (t-SNE)
2.2.10. Tips on practical use

sklearn.decomposition.PCA

sklearn.decomposition.KernelPCA

2.2. Manifold learning

Look for the bare necessities

The simple bare necessities

Forget about your worries and your strife
I mean the bare necessities

Old Mother Nature’s recipes

That bring the bare necessities of life

— Baloo’s song [The Jungle Book]

Original S-curve samples

Isomap Embedding Multidimensional scaling Spectral Embedding T-distributed Stochastic

p Neighbor Embedding




Why learning eigenfunctions

V.S.

PCA

maximizing the variation of data maximizing mutual information
representations



Why learning eigenfunctions

Stein’s Lemma (1972)

(Vlogg, l//j>L2(q) = —E, [ Vy(x)]

SSGE (Shi et al., ICML 2018)

Viogq(x) = — Y E, | V| yx)
j>1
density (score) eigenfunction

Spectral methods seem to capture more information than generative modelling



Eigenfunctions defined on the kernel integral operator

(T f)(x): = Eyrop [k, x") f (x7)]

Exrnp Lk, xDP (X)) = wip(x)
Similar to the infinite-dim matrix eigenvalue problem:

Ku = Au



Eigenfunctions defined on the kernel integral operator

(T f)(x): = Eyrop [k, x") f (x7)]

k(x,x")
+ .
X1s ««+s Xy, ™~ D (data distribution)

wi(x)

Eigenfunction

* It seems to be a good learning principle. Why less used today?
» Scaling is a problem for nonparametric methods

» Cannot leverage inductive bias such as equivariance



An example of the classic approach (Nystrom method)

k(x, X)
@(x)T & @(X) @ Eigenvector(|

D

P

(%1 Uk
_— , EEE ,

Y(x) = k(x'X)[\/MT \/T_K

]

10



Spectral methods + deep learning

Learn neural eigenfunctions

Exrep [, x )P (x")] = uap(x)

NNs
Spectral methods: Deep learning:
learn eigenfunctions; expressive; parametric

usually nonparametric
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An obijective for learning neural eigenfunctions
Deng, Shi & Zhu, ICML'22

-\ =5 L2 Batch normalization
maxR Z] 1R—” S.t. |Eyrep [wj(x’)z] =l Y EES

Vj
Rij = Exprep [Wi (K (x, xY; (xX)]

* Can be seen as a function-space generalization of EigenGame [Gemp et al,,
2020] which works on PSD matrices
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The neural eigenfunctions of kernels defined with
random MLPs

Input data Projected by our method Projected by SpIN

oy

Input data Projected by our method Projected by SpIN

(a) “Two-moon” data

(b) “Circles” data
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The spectral principle for representation learning

* Such a principle dates back to spectral clustering [Shi & Malik, 2000] and
Laplacian Eigenmaps [Belkin & Niyogi, 2003]

Graph
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/ [Source: https://developer.nvidia.com/discover/cluster-analysis]

the eigenmap of data

Preprocessing

* The outputs of principal eigenfunctions are representations that optimally
preserve local neighborhoods on data manifolds (min-cut of a graph)
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Key to generalizing this principle to domains of interest
- the choice of the kernel

e The contrastive kernel

Ep)|p(X]X)p(x'|X)]
p(x)p(xr)

p(x|Xx): augmentation distribution

e k(x,x') =

[HaoChen et al,, 2021; Johnson et al.,
2022]

* The kernel can reflect semantic
closeness
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Eigenfunctions are strong self-supervised learners
Deng*, Shi*, et al., 2022

Representations
(for transfer tasks)

Distorted N
images "
X —
Images b gXb'H
L2
= normalize
Xb over the
batch dim.
+ —_
b 9x;.6
Encoder  Projector Stop gradient
k k 7—1
:Z gx, 99x+ _O‘ZZ(QX 99x+ )U
j=1 71=11=1

Deng*, Shi*, Zhang, Cui, Lu & Zhu. Neural Eigenfunctions Are Structured Representation Learners. arXiv:2210.12637, 2022.



One merit

Representations
(for transfer tasks)

Distorted N
images "
—)
Images 9x b0
L2
= normalize
Xb over the
batch dim.
+ —
b 9x;.6

Encoder  Projector

* The features are ordered by their relative importance due to the convergence to
ordered eigenfunctions (principal eigenfuncs contain more critical info from kernel)

* The features are orthogonal to others in function space, so redundancy is minimized
* So we can adapt representation length according to cost-quality tradeoff
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The comparison to Barlow Twins (Zbontar et al,, 2021)

X+_

E

gX+*; 0

X and X are positive pairs

e

Training obj: l 1

E gX;0) — T\,

Empirical Covariance of
g(X; 0) and g(X™; 0)

Barlow Twins

Training obj: l )

X E gX:0) < \4
X+ NN SG(g(X*;6)) ~
stop_gradient

\

converges to ordered eigenfunctions

Ours
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Unsupervised image retrieval at different levels of
representation truncation

Query | | Retrieval Results

d=4

Representation Length
o
i
(o))
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Unsupervised image retrieval at different levels of
representation truncation
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Figure 1: Retrieval mAP varies w.r.t. representation dimensionality.
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Figure 2: Retrieval precision varies w.r.t. representation dimensionality.

Neural Eigenmap requires up to 16% fewer representation dimensions

than the competitors to achieve similar retrieval performance
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Images that excite the neural eigenfunctions most
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ImageNet linear probe accuracy with ResNet-50 encoder

Table 1: Comparisons on ImageNet linear
probe accuracy (%) with the ResNet-50 encoder
pre-trained for 7100 epochs. The results of Sim-
CLR, SwAYV, MoCo v2, BYOL, and SimSiam
are from (Chen & He, 2021). The result of
SCL is from (HaoChen et all,[2021), and that of
Barlow Twins is reproduced by ourselves. As
shown, our method outperforms all baselines.

Method batch size top-1 accuracy
SimCLR 4096 66.5
SwWAV 4096 66.5
MoCo v2 256 67.4
BYOL 4096 66.5
SimSiam 256 68.1
SCL 384 67.0
Barlow Twins 2048 66.2

Neural Eigenmap 2048 68.4
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Comparison on ImageNet linear probe accuracy with
various training epochs

Method 100ep 200ep 400ep

SimSiam 68.1 70.0 70.8
Neural Eigenmap  68.4 70.3 TS




Transfer learning on COCO detection and instance
segmentation

PSR COCO detection COCO instance seg.

8 APs AP APy APTEsk APpmesk APTEk
ImageNet supervised 58.2 38.2 41.2 54.7 53.3 352
SimCLR 57.7 39 40.9 54.6 333 35.3
MoCo v2 58.8 39.2 42.5 55.5 34.3 36.6
BYOL 57.8 319 40.9 54.3 352 35.0
SimSiam, base 575 37.9 40.9 54.2 352 35.2
SimSiam, optimal 59.3 39.2 42.1 56.0 34.4 36.7

Neural Eigenmap 59.6 39.9 43.5 56.3 34.9 37.4




Neural Eigenmaps for graph-structure data

* Learning eigenfunctions provides a unifying surrogate objective for
representation learning

* The normalized adjacency matrix for a graph is
A = DY/2AD'/?

*  We propose to treat A as the gram matrix of k(x,x) on X

* The kernel may not be positive semidefinite, so we make a fix to our
theorem and show that when the kernel has at least k — 1 positive
eigenvalues, we can still use that optimization problem to discover the k
principal eigenfunctions.
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Neural Eigenmaps for graph-structure data

Node features X,

Neural Eigenmaps 9x,,6
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Neural Eigenmaps can also beat Laplacian Eigenmaps and GCNs!

*  We operate on OGBN-Products [Hu et al., 2020], one of the most

large-scale node property prediction benchmarks, with 2, 449, 029
nodes and 61, 859, 140 edges

Method 100% training labels 10% training labels 1% training labels
Plain MLP 62.16 £ 0.15 57.44 + 0.20 47.76 £ 0.62
Laplacian Eigenmap + MLP 64.21 £+ 0.35 58.99 £+ 0.20 49.94 + 0.30
Node2vec + MLP 72.50 £ 0.46 68.72 £+ 0.43 61.97 £+ 0.44
GCN .2 31 73.14 + 0.34 67.61 + 0.48
Neural Eigenmap 76.93 £0.04 7448 £0.39 67.84 £0.79
Neural Eigenmap w/o stop_grad 78.33 £+ 0.08 75.78 + 0.46 68.04 + 0.39

* Our method is much faster than GCNs in the test phase because GCN
needs to aggregate information from the graph while our methods
doesn’t
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Spectral clustering for unsupervised semantic segmentation
Challenges

Color affinities W, MxN MxN

1) Spectral Decomposition

: Self-Supervised N /¢ MxN MxN
of Self-Supervised 5 —
Feature Affinities |
it imase Dense Features Patch Laplacian Eigensegments
P § features f affinities W, L=D"2(D-W)D"?  {A,y,}=eigs(L)

 The scalability issue: computing the eigenvectors of the NP2-by-NP? matrix
over a large dataset is intractable (P? is the number of patches in a picture)

* The inference still involves matrix decomposition
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Unsupervised semantic segmentation by learning

eigenfunctions
Deng & Luo, ICCV 2023
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Unsupervised semantic segmentation by learning

eigenfunctions

Figure 2. Visualization of the unsupervised semantic segmentation
results on Pascal Context [31].

Figure 3. Visualization of the unsupervised semantic segmentation
results of our method on ADE20K. In each pair, the left refers to
the input image, and the right refers to the segmentation result. As
shown, our method can yield reasonable pixel groups for images
containing complex structures.
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Scaling up Neural Tangent Kernels (NTKs)

Mercer’s theorem: k(x,x") = Xi»1 1P () (x")

Ground truth Our method (k =10) Random feature approach (S =10)
= i B ST T Rl BT T

PR ] 1.00

—e— Ground truth
¥+ Our method
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it 2 (8 2o § VM Pl g e

e AR M e sl 0.00
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i-th eigenvalue

Approximating NTKs of ResNet-20

* NTKs are powerful kernels and important tools for understanding deep learning
* Scaling NTKs has been painful: IK random features = |K forward/backward passes

* Replace random features with neural eigenfunctions!



Accelerate Laplace approximation with approximated NTK

Deng, Zhou & Zhu, NeurIPS'22

* The functional predictive for linearized Laplace approximation:

kLa(z, @) = o5 (KNTK(-’L', z') — kntk (T, X) [Ax v /05 + Ntk (X, X)) ™ etk (X, fB/))

* Introduce NeuralEF to approximate the NTK:

/ / — 1 /
mua(@, @) ~od (p(@)p@)T - p@)ex [Ax'y /o5 + exex|  exp@)T)

—p(@) [ 3 pl@) A, y)e(@:) + /o | (@) 2 kmia(e, @)

A - =

G
4<
10 50
3 AURR: 919135 8/ AUPR: 0.8904 401 AUPR: 0.8864
) 1 In-distribution z 2>
221 SR G 6 %30
) [ Out-of-distribution S <
° 0 4 O 20
1.
2 10
0 T 0 T 7 y " 0+— - - >
2 0.0 05 1.0 1.5 2.15 2.20 2.25 2.30
(a) Ours (b) MAP (c) KFACLLA

Deng, Zhou & Zhu. Accelerated Linearized Laplace Approximation for Bayesian Deep Learning. NeurIPS 2022.
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Solve PDEs by eigendecomposition

* The time-independent Schrodinger equation for a single particle with
mass M in a potential field V(X) is a PDE of the form:

B(x) = 5920 + V(x)0() = Hpl()

whose solutions describe the wavefunctions Y¥(x) with unique energy E

(a) Eigenvectors found by exact eigensolver on a grid

B ) L P D O

(b) Eigenfunctions found by SpIN without bias correction (8 = 1)

(c) Eigenfunctions found by SpIN with 3 = 0.01 to correct for biased gradients

David Pfau et al., Spectral Inference Networks: Unifying Deep and Spectral Learning. ICLR’19
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Learn the solving operator for PDEs

(T fI(X): = Exrep [k, x') f (x7)]

* The current approach: given T}, estimate u,

* A new problem: given T}, f; = u;,i = 1, ..., N, estimate u,
v' Can recover the kernel integral operator from i,

v Corresponds to the Green’s function method for solving PDE
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Learn the solving operator for PDEs
Xiao, Hao, Lin, Deng* & Su*, 2023

* Orthogonal neural operator

Input function |~

Discretization points

_‘

Encoder

Encoder

* Orthogonal attention
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9i \mm-ﬂortho-"mm
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[ “;m = mm == mm === add => LN = FFN =h!""
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Learn the solving operator for PDEs
Xiao, Hao, Lin, Deng* & Su*, 2023

* Improved generalization ability

U

(a) (b) (©)
Figure 3: Zero-shot super-resolution results on Darcy. (a): Groundtruth. (b): Prediction of FNO.
(c): Prediction of ONO. Trained on 43 x 43 data and evaluated on 421 x 421.
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Future direction: the integration of neural
eigenfunctions and score-based models

k(x, x) y(x) Vlog p(x)

+ _— _

Eigenfunction Score

X1y « o9 Xy ™ D (data distribution)

Score-based modelling

Will generative modelling and representation learning eventually
converge to a single method?
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Takeaways

* Spectral methods can lead to a framework of unsupervised

learning

* Replacing nonparametric methods with a deep functional

representation is fruitful.
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Thanks!
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